Skip to main content

Wavelength Discrimination and the Theory of Colour Vision

  • Chapter
Physiology of the Eye

Abstract

The problem of colour vision has attracted the interest and excited the speculation not only of physiologists but of physicists, psychologists, anatomists, philosophers, and poets with the inevitable result that the subject has abounded with theories; in the present treatment we shall confine ourselves to the main experimental findings and show how they are related to the Young-Helmholtz trichromatic theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguliar, M. & Stiles, W. S. (1954) Saturation of the rod mechanism at high levels of illumination. Optica Acta 1, 59–65.

    Article  Google Scholar 

  • Alpern, M., Mindel, J. & Torii, S. (1968) Are there two types of deuteranopes? J. Physiol. 199, 443–456.

    Article  Google Scholar 

  • Alpern, M. & Moeller, J. (1977) The red and green cone visual pigments of deuteranomalous trichromacy. J. Physiol. 266, 647–675.

    Article  Google Scholar 

  • Alpern, M. & Pugh, E. N. (1977) Variation in the action spectrum of enythrolabe among deuteranopes. J. Physiol. 266, 613–646.

    Article  Google Scholar 

  • Alpern, M. & Wake, T. (1977) Cone vision in human deutan colour vision defects. J. Physiol. 266, 595–612.

    Article  Google Scholar 

  • Arden, G. B. & Tansley, K. (1955) The spectral sensitivity of the pure cone retina of the squirrel (Sciurus carolinensis leucotis). J. Physiol. 127, 592–602.

    Article  Google Scholar 

  • Baker, H. D. & Rushton, W. A. H. (1965) The red-sensitive pigment in normal cones. J. Physiol. 176, 56–72.

    Article  Google Scholar 

  • Barlow, H. B. (1982) What causes trichromacy? A theoretical analysis using comb-filtered spectra. Vision Res. 22, 635–644.

    Article  Google Scholar 

  • Baylor, D. A. & Hodgkin, A. L. (1973) Detection and resolution of visual stimuli by turtle photoreceptors. J. Physiol. 234, 163–198.

    Article  Google Scholar 

  • Baylor, D. A., Nunn, B. J. & Schnapf, J. L. (1987) Spectral sensitivity of cones of the monkey Macaca fascicularis. J. Physiol. 390, 145–160.

    Google Scholar 

  • Blackwell, H. R. & Blackwell, O. M. (1961) Rod and cone mechanisms in typical and atypical congenital achromatopsia. Vision Res. 1, 62–107.

    Article  Google Scholar 

  • Bowmaker, J. K. (1977) The visual pigments, oil droplets and spectral sensitivity of the pigeon. Vision Res. 17, 1129–1138.

    Article  Google Scholar 

  • Bowmaker, J. K. & Dartnall, H. J. A. (1980) Visual pigments of rods and cones in a human retina. J. Physiol. 298, 501–511.

    Article  Google Scholar 

  • Bowmaker, J. K. & Knowles, A. (1977) The visual pigments and oil droplets of the chicken retina. Vision Res. 17, 755–764.

    Article  Google Scholar 

  • Brindley, G. S. (1954) The summation areas of human colour-receptive mechanisms at increment threshold. J. Physiol. 124, 400–408.

    Article  Google Scholar 

  • Brindley, G. S., Du Croz, J. J. & Rushton, W. A. H. (1966) The flicker fusion frequency of the blue-sensitive mechanism of colour vision. J. Physiol. 183, 497–500.

    Article  Google Scholar 

  • Brown, P. K. & Wald, G. (1964) Visual pigments in single rods and cones of the human retina. Science 144, 45–52.

    Article  Google Scholar 

  • Buchsbaum, G. & Gottschalk, A. (1983) Trichromacy, opponent colour coding and optimum colour information transmission in the retina. Proc. Roy. Soc. B 220, 89–113.

    Article  Google Scholar 

  • Cole, B. L. & Watkins, R. D. (1967) Increment thresholds in tritanopia. Vision Res. 7, 939–947.

    Article  Google Scholar 

  • Dagher, M., Cruz, A. & Plaza, L. (1958) Colour thresholds with monochromatic stimuli in the spectral region 530–630 µ. In Visual Problems of Colour. N.P.L. Symp., No. 8, pp. 389–398.

    Google Scholar 

  • Dartnall, H. J. A., Bowmaker, J. K. & Mollon, J. D. (1983) Human visual pigments: microspectrophotometric results from the eyes of seven persons. Proc. Roy. Soc. B 220, 115–130.

    Article  Google Scholar 

  • Daw, N. W. (1968) Colour-coded ganglion cells in the goldfish retina: extension of their receptive fields by means of new stimuli. J. Physiol. 197, 567–592.

    Article  Google Scholar 

  • Daw, N. W. (1973) Neurophysiology of color vision. Physiol. Rev. 53, 571–611.

    Google Scholar 

  • De Monasterio, F. M. & Gouras, P. (1975) Functional properties of ganglion cells of the rhesus monkey retina. J. Physiol. 251, 167–195.

    Article  Google Scholar 

  • De Monasterio, F. M., Gouras, P. & Tolhurst, D. J. (1975a) Trichromatic colour opponency in ganglion cells of the rhesus monkey retina. J. Physiol. 251, 197–216.

    Article  Google Scholar 

  • De Monasterio, F. M., Gouras, P. & Tolhurst, D. J. (1975b) Concealed colour opponency in ganglion cells of the rhesus monkey retina. J. Physiol. 251, 217–229.

    Article  Google Scholar 

  • De Monasterio, F. M. & Schein, S. J. (1980) Protan-like spectral sensitivity of foveal Y ganglion cells of the retina of macaque monkeys. J. Physiol. 299, 385–396.

    Article  Google Scholar 

  • De Monasterio, F. M. & Schein, S. J. (1982) Spectral bandwidths of color-opponent cells of geniculocortical pathway of macaque monkey. J. Neurophysiol. 47, 214–224.

    Google Scholar 

  • Dodt, E. & Walther, J. B. (1958) Der photopischer Dominator im Flimmer-ERG der Katze. Pflüg. Arch. 266, 175–186.

    Article  Google Scholar 

  • Dreher, B., Fukada, Y. & Rodieck, R. W. (1976) Identification, classification and anatomical segregation of cells of X-like and Y-like properties in the lateral geniculate nucleus of old-world primates. J. Physiol. 258, 433–452.

    Article  Google Scholar 

  • Fager, L. Y. & Fager, R. S. (1981) Chicken blue and chicken violet, short wavelength sensitive visual pigments. Vision Res. 21, 581–586.

    Article  Google Scholar 

  • Fincham, E. F. (1953) Defects of the colour-sense mechanism as indicated by the accommodation reflex. J. Physiol. 121, 570–580.

    Article  Google Scholar 

  • Fuortes, M. G. F. & Simon, E. J. (1974) Interactions leading to horizontal cell responses in the turtle retina. J. Physiol. 240, 177–198.

    Article  Google Scholar 

  • Gibson, I. M. (1962) Visual mechanisms in a cone-monochromat. J. Physiol. 161, 10–11P.

    Article  Google Scholar 

  • Glickstein, M. & Heath, G. G. (1975) Receptors in the monochromat eye. Vision Ręs. 15, 633–636.

    Article  Google Scholar 

  • Gouras, P. (1968) Identification of cone mechanisms in monkey ganglion cells. J. Physiol. 199, 533–547.

    Article  Google Scholar 

  • Gouras, P. (1969) Antidromic responses of orthodomically identified ganglion cells in monkey retina. J. Physiol. 204, 407–419.

    Article  Google Scholar 

  • Graham, C. H. & Hsia, Y. (1958) Colour defect and colour theory. Science 127, 675–682.

    Article  Google Scholar 

  • Granit, R. (1943) A physiological theory of colour perception. Nature, Lond. 151, 11–14.

    Article  Google Scholar 

  • Granit, R. & Wrede, C. M. (1937) The electrical responses of the light-adapted frog’s eyes to monochromatic stimuli. J. Physiol. 89, 239–256.

    Article  Google Scholar 

  • Hanoaka, T. & Fujimoto, K. (1957) Absorption spectrum of a single cone in carp retina. Jap. J. Physiol. 7, 276–285.

    Article  Google Scholar 

  • Hárosi, F. I. & Hashimoto, Y. (1983) Ultraviolet visual pigments in a vertebrate: a tetrachromatic cone system in the dace. Science 222, 1021–1023.

    Article  Google Scholar 

  • Hecht, S. (1947) Colourblind vision. I. Luminosity losses in the spectrum from dichromats J. gen. Physiol. 31, 141–152.

    Article  Google Scholar 

  • Hubel, D. H. & Wiesel, T. N. (1960) Receptive fields of optic nerve fibres in the spider monkey. J. Physiol. 154, 572–580.

    Article  Google Scholar 

  • Hurvich, L. M. (1972) Color vision deficiencies. In Hdb. Sensory Physiol. VII/4, 607. Springer, Berlin.

    Google Scholar 

  • Hurvich, L. M. & Jameson, D. (1955) Some quantitative aspects of an opponent colour theory. I–III. J. Opt. Soc. Amer. 45, 546–552, 602–616; 46, 405–415.

    Article  Google Scholar 

  • Jameson, D. & Hurvich, L. M. (1955) Some quantitative aspects of an opponent colour theory. I. J. Opt. Soc. Amer. 45, 546–552.

    Article  Google Scholar 

  • Jameson, D. & Hurvich, L. M. (1956) Some quantitative aspects of an opponent colour theory. III. J. Opt. Soc. Amer. 46, 405–415.

    Article  Google Scholar 

  • Jameson, D. & Hurvich, L. M. (1968) Opponent response functions related to measured cone photopigments. J. Opt. Soc. Amer. 58, 429–430.

    Article  Google Scholar 

  • Kaneko, J. A. & Tachibana, M. (1985) A voltage-clamp analysis of membrane currents in solitary bipolar cells dissociated from Carassius auratus. J. Physiol. 358, 131–152.

    Article  Google Scholar 

  • Kolb, H. & Jones, J. (1985) Electron microscopy of Golgi-impregnated photoreceptors reveals connections between red and green cones in the turtle retina. J. Neurophysiol. 54, 304–317.

    Google Scholar 

  • Larsen, H. (1921) Demonstration mikroskopischer Präparate von einem monochromatischen Auge. Klin. Mbl. Augenheilk. 67, 301–302.

    Google Scholar 

  • Le Grand, Y. (1948) Optique Physiologique. Vol. 2. Paris: Editions de la Revue D’Optique.

    Google Scholar 

  • Liebman, P. A. (1972) Microspectrophotometry of photoreceptors. In Hdb Sensory Physiol. VII/1, 482–528. Berlin, Springer.

    Google Scholar 

  • Liebman, P. A. & Granda, A. M. (1971) Microspectrophotometric measurements of visual pigments in two species of turtle (Pseudemys scripta and Chelona mydas). Vision Res. 11, 105–114.

    Article  Google Scholar 

  • Loop, M. S., Millican, C. L. & Thomas, S. R. (1987) Photopic spectral sensitivity in the cat. J. Physiol. 382, 537–553.

    Article  Google Scholar 

  • Marks, W. B. (1965) Visual pigments of single goldfish cones. J. Physiol. 178, 14–32.

    Article  Google Scholar 

  • Marks, W. B., Dobelle, W. H. & MacNichol, E. F. (1964) Visual pigments of single primate cones. Science 143, 1181–1183.

    Article  Google Scholar 

  • Marriott, F. H. C. (1976) Colour vision. In The Eye, Ed. H. Davson. Vol. 2A, pp. 475–588. Academic Press: New York.

    Google Scholar 

  • McFarland, W. N. & Munz, F. W. (1975) The evolution of photopic visual pigments in fishes. Vision Res. 15, 1071–1080.

    Article  Google Scholar 

  • Muntz, W. R. A. (1972) Inert absorbing and reflecting pigments. Hdb. Sensory Physiol. VII/1, 529–565.

    Article  Google Scholar 

  • Munz, F. W. & McFarland, W. N. (1975) Presumptive cone pigments extracted from tropical marine fish. Vision Res. 15, 1045–1062.

    Article  Google Scholar 

  • Naka, K. I. & Rushton, W. A. H. (1966a) Sopotentials from colour units in the retina of the fish (Cypridinae). J. Physiol. 185, 436–555.

    Google Scholar 

  • Naka, K. I. & Rushton, W. A. H. (1966b) An attempt to analyse colour reception by electrophysiology. J. Physiol. 185, 556–586.

    Article  Google Scholar 

  • Naka, K. I. & Rushton, W. A. H. (1966c) Sopotentials from luminosity units in the retina of the fish (Cypridinae). J. Physiol. 185, 587–599.

    Article  Google Scholar 

  • Normann, R. A., Perlman, I. & Daly, S. J. (1985) Mixing of color signals by turtle cone photoreceptors. J. Neurophysiol. 54, 293–303.

    Google Scholar 

  • Norren, D. V. (1975) Two short wavelength sensitive cone systems in pigeon, chicken and daw. Vision Res. 15, 1164–1166.

    Article  Google Scholar 

  • Norton, A. L., Spekreijse, H., Wohlbarsht, M. L. & Wagner, H. G. (1968) Receptive field organization of the S-potential. Science 160, 1021–1022.

    Article  Google Scholar 

  • Piantanida, T. P. & Sperling, H. G. (1973) Isolation of a third chromatic mechanism in the deuteranomalous observer. Vision Res. 13, 2049–2058.

    Article  Google Scholar 

  • Pickford, R. W. (1951) Individual Differences in Colour Vision. Routledge and Kegan Paul, London.

    Google Scholar 

  • Pitt, F. H. G. (1935) Characteristics of dichromatic vision. Med. Res. Council Sp. Rep. Ser., No. 200.

    Google Scholar 

  • Pokorny, J., Smith, V. C. & Katz, I. (1973) Derivation of the photopigment absorption spectra in anomalous trichromats. J. opt. Soc. Am. 63, 232–237.

    Article  Google Scholar 

  • Pugh, E. N. (1976) The nature of the π1 colour mechanism J. Physiol.257, 713–747.

    Article  Google Scholar 

  • Richter, A. & Simon, E. J. (1974) Electrical responses of double cones in the turtle retina. J. Physiol. 242, 673–683.

    Article  Google Scholar 

  • Ringo, J. L. & Wohlbarsht, M. L. (1986) Spectral coding in cat retinal ganglion cell receptive fields. J. Neurophysiol. 55, 320–330.

    Google Scholar 

  • Rushton, W. A. H. (1959) Visual pigments in man and animals and their relation to seeing. Progr. Biophys. 9, 239–283.

    Google Scholar 

  • Rushton, W. A. H. (1963) A cone pigment in the protanope. J. Physiol. 168, 345–359.

    Article  Google Scholar 

  • Rushton, W. A. H. (1965) A foveal pigment in the deuteranope. J. Physiol. 176, 24–37.

    Article  Google Scholar 

  • Stell, W. K. & Lightfoot, D. O. (1975) Color-specific interconnections of cones and horizontal cells in the retina of the goldfish. J. comp. Neurol. 159, 473–502.

    Article  Google Scholar 

  • Stiles, W. S. (1959) Colour vision: the approach through increment-threshold sensitivity. Proc. Natl. Acad. Sci. Wash. 45, 100–114.

    Article  Google Scholar 

  • Stiles, W. S. & Burch, J. M. (1959) N.P.L. colour-matching investigations: final report (1958). Optica Acta 6, 1–26.

    Article  Google Scholar 

  • Svaetichin, G. (1956) Spectral response curves from single cones. Acta physiol. Scand. 39, Suppl. 134, 17–46.

    Google Scholar 

  • Svaetichin, G. & MacNichol, E. F. (1958) Retinal mechanisms for chromatic and achromatic vision. Ann. N.Y. Acad. Sci. 74, 385–404.

    Article  Google Scholar 

  • Tomita, T., Kaneka, A., Murakami, M. & Pautler, E. L. (1967) Spectral response curves of single cones in the carp. Vision Res. 7, 519–531.

    Article  Google Scholar 

  • Wald, G. (1945) Human vision and the spectrum. Science 101, 653–658.

    Article  Google Scholar 

  • Wald, G., Brown, P. K. & Smith, P. H. (1955) Iodopsin. J. gen. Physiol. 38, 623–681.

    Article  Google Scholar 

  • Walls, G. L. & Heath, G. G. (1954) Typical total colour blindness reinterpreted. Acta ophthal. Kbh. 32, 253–297.

    Article  Google Scholar 

  • Weale, R. A. (1953) Cone monochromatism. J. Physiol. 121, 548–569.

    Article  Google Scholar 

  • Weale, R. A. (1959) Photosensitive reactions in fovea of normal and cone-monochromatic observers. Optica Acta, 6, 158–174.

    Article  Google Scholar 

  • Wiesel, T. N. & Hubel, D. H. (1966) Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J. Neurophysiol. 24, 1115–1156.

    Google Scholar 

  • Wright, W. D. (1946) Researches on Normal and Defective Colour Vision. London: Kimpton.

    Google Scholar 

  • Wright, W. D. (1952) The characteristics of tritanopia. J. opt. Soc. Am. 42, 509–521.

    Article  Google Scholar 

  • Wyszecki, G. & Stiles, W. S. (1982) Color Science. Concepts and Methods. N.Y.: Wiley. (Quoted by Baylor et al., 1987.)

    Google Scholar 

  • Yang, X.-L., Tauchi, M. & Kaneko, A. (1983) Convergence of signals from red-sensitive and green-sensitive cones onto L-type external horizontal cells of the goldfish retina. Vision Res. 23, 371–380.

    Article  Google Scholar 

  • Yen, L. & Fager, R. S. (1984) Chromatographic resolution of the rod pigment from the four cone pigments of the chicken retina. Vision Res. 24, 1555–1562.

    Article  Google Scholar 

  • Yoshizawa, T. & Wald, G. (1967) Photochemistry of iodopsin. Nature 214, 566–571.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 1990 Hugh Davson

About this chapter

Cite this chapter

Davson, H. (1990). Wavelength Discrimination and the Theory of Colour Vision. In: Physiology of the Eye. Palgrave, London. https://doi.org/10.1007/978-1-349-09997-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-09997-9_15

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-09999-3

  • Online ISBN: 978-1-349-09997-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics