Electrophysiology of the Retina: Further Studies on Cold-Blooded Retina

  • Hugh Davson
Chapter

Abstract

Because of their larger size the cells of the lower vertebrate retinae have been examined preferentially in the classical studies on intracellularly recorded responses. We may therefore continue with this study by considering further features.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baylor, D. A. & Fettiplace, R. (1975a) Light path and photon capture in turtle photoreceptors. J. Physiol. 248, 434–464.CrossRefGoogle Scholar
  2. Baylor, D. A. & Fettiplace, R. (1975b) Transmission of signals from photoreceptors to ganglion cells in the eye of the turtle. Cold Spr. Harb. Symp. quant. Biol. 40, 528–536.Google Scholar
  3. Baylor, D. A. & Fettiplace, R. (1977) Transmission from photoreceptors to ganglion cells in turtle retina. J. Physiol. 271, 391–424.CrossRefGoogle Scholar
  4. Baylor, D. A. & Fuortes, M. G. F. (1970) Electrical responses of single cones in the retina of the turtle. J. Physiol. 207, 77–92.CrossRefGoogle Scholar
  5. Baylor, D. A., Fuortes, M. G. F. & O’Bryan, P. M. (1971) Receptive fields of cones in the retina of the turtle. J. Physiol. 214, 265–294.CrossRefGoogle Scholar
  6. Baylor, D. A. & Hodgkin, A. L. (1973) Detection and resolution of visual stimuli by turtle photoreceptors. J. Physiol. 234, 163–198.CrossRefGoogle Scholar
  7. Baylor, D. A., Hodgkin, A. L. & Lamb, T. D. (1974) The electrical response of turtle cones to flashes and steps of light. J. Physiol. 242, 685–727.CrossRefGoogle Scholar
  8. Baylor, D. A., Hodgkin, A. L. & Lamb, T. D. (1974) Reconstruction of the electrical responses of turtle cones to flashes and steps of light. J. Physiol. 242, 759–791.CrossRefGoogle Scholar
  9. Bortoff, A. & Norton, A. L. (1967) An electrical model of the vertebrate photoreceptor cell. Vision Res. 7, 253–263.CrossRefGoogle Scholar
  10. Brown, J. E. & Major, D. (1966) Cat retinal ganglion cell dendritic fields. Exp. Neurol. 15, 70–78.CrossRefGoogle Scholar
  11. Brown, K. T. & Crawford, J. M. (1967) Melanin and the rapid light-evoked responses from pigment epithelium cells of the frog eye. Vision Res. 7, 165–178.CrossRefGoogle Scholar
  12. Brown, K. T. & Murakami, M. (1964) A new receptor potential of the monkey retina with no detectable latency. Nature 201, 626–628.CrossRefGoogle Scholar
  13. Brown, K. T. & Wiesel, T. N. (1961) Analysis of the intraretinal electroretinogram in the intact cat eye. J. Physiol. 158, 229–256.CrossRefGoogle Scholar
  14. Brown, K. T. & Wiesel, T. N. (1961) Localization of origins of electroretinogram components by intraretinal recording in the intact cat eye. J. Physiol. 158, 257–280.CrossRefGoogle Scholar
  15. Burckhardt, D. A. (1970) Proximal negative response of frog retina. J. Neurophysiol. 33, 405–420.Google Scholar
  16. Carr, R. E. & Siegel, I. M. (1970) Action spectrum of the human early receptor potential. Nature 225, 89–90.CrossRefGoogle Scholar
  17. Cavaggioni, A., Sorbi, R. T. & Turini, S. (1972) Efflux of potassium from the isolated frog retina: a study of the photic effect. J. Physiol. 222, 427–445.CrossRefGoogle Scholar
  18. Cervetto, L. & Piccolino, M. (1974) Synaptic transmission between photoreceptors and horizontal cells in the turtle retina. Science 183, 417–418.CrossRefGoogle Scholar
  19. Cone, R. A. (1964) Early receptor potential of the vertebrate retina. Nature 204, 736–739.CrossRefGoogle Scholar
  20. Cone, R. A. & Brown, P. K. (1967) Dependence of the early receptor potential on the orientation of rhodopsin. Science 156, 536.Google Scholar
  21. Cone, R. A. & Cobbs, W. H. (1969) Rhodopsin cycle in the living eye of the rat. Nature 221, 820–822.CrossRefGoogle Scholar
  22. Conner, J. D., Detwiler, P. B. & Sarthy, P. V. (1985) Ionic and electrophysiological properties of retinal Müller (glial) cells of the turtle. J. Physiol. 362, 79–92.CrossRefGoogle Scholar
  23. Copenhagen, D. R. & Owen, W. G. (1976) Functional characteristics of lateral interactions between rods in the retina of the snapping turtle. J. Physiol. 259, 251–282.CrossRefGoogle Scholar
  24. Cunningham, R. A. & Miller, R. F. (1980) Electrophysiological analysis of taurine and glycine actions on neurons of the mudpuppy retina. I. Intracellular recordings. II. ERG, PNR and Müller cell recordings. Brain Res. 197, 123–138, 139–151.CrossRefGoogle Scholar
  25. Daw, N. W. (1968) Colour-coded ganglion cells in the goldfish retina: extension of their receptive fields by means of new stimuli. J. Physiol. 197, 567–592.CrossRefGoogle Scholar
  26. Debecker, J. & Zanen, A. (1975) Intensity functions of the early receptor potential and of the melanin fast photovoltage in the human eye. Vision Res. 15, 101–106.CrossRefGoogle Scholar
  27. Dick, E. & Miller, R. F. (1978) Light-evoked activity in mudpuppy retina: its relationship to the b-wave of the electroretinogram. Brain Res. 154, 388–394.CrossRefGoogle Scholar
  28. Dowling, J. E. & Werblin, F. S. (1969) Organization of retina of the mudpuppy Necturus maculosus I. Synaptic structure. J. Neurophysiol. 32, 315–335.Google Scholar
  29. Faber, D. S. (1969) Analysis of the slow transretinal potentials in response to light. PhD Thesis, University of New York at Buffalo. (Quoted by Miller & Dowling, 1970.)Google Scholar
  30. Fain, G. L. (1975a) Interactions of rod and cone signals in the mudpuppy retina. J. Physiol. 252, 735–769.CrossRefGoogle Scholar
  31. Fain, G. L. (1975b) Quantum sensitivity of rods in the toad retina. Science 187, 838–841.CrossRefGoogle Scholar
  32. Fain, G. L., Gold, G. H. & Dowling, J. E. (1975) Receptor coupling in the toad retina. Cold Spr. Harb. Symp. quant. Biol. 40, 547–651.CrossRefGoogle Scholar
  33. Fujimoto, M. & Tomita, T. (1981) Field potentials induced by injections of potassium into the frog retina: a test of current interpretations of the electroretinographic (ERG) b-wave. Brain Res. 204, 51–64.CrossRefGoogle Scholar
  34. Fuortes, M. G. F. & Hodgkin, A. L. (1964) Changes in time scale and sensitivity in the ommatidium of Limulus. J. Physiol. 172, 239–263.CrossRefGoogle Scholar
  35. Fuortes, M. G. F., Schwartz, E. A. & Simon, E. J. (1973) Colour-dependence of cone responses in the turtle retina. J. Physiol.234, 199–216.CrossRefGoogle Scholar
  36. Goldstein, E. B. & Berson, E. L. (1969) Cone dominance of the human early receptor potential. Nature 222, 1272–1273.CrossRefGoogle Scholar
  37. Govardovskii, V. I. (1975) The sites of generation of early and late receptor potentials in rods. Vision Res. 15, 973–980.CrossRefGoogle Scholar
  38. Granit, R. (1947) Sensory Mechanisms of the Retina. London: Oxford University Press.Google Scholar
  39. Granit, R. & Riddell, H. A. (1934) The electrical responses of light- and dark-adapted frog’s eyes to rhythmic and continuous stimuli. J. Physiol. 81, 1–28.CrossRefGoogle Scholar
  40. Hanawa, I., Takahashi, K. & Kawamoto, N. (1971) A correlation of embryogenesis of visual cells and early receptor potential in the developing retina. Exp. Eye Res. 23, 587–594.CrossRefGoogle Scholar
  41. Hodgkin, A. L. & O’Bryan, P. M. (1977) Internal recording of the early receptor potential in turtle cones. J. Physiol. 267, 737–766.CrossRefGoogle Scholar
  42. Kaneko, A. (1973) Receptive field organization of bipolar and amacrine cells in the goldfish retina. J. Physiol. 235, 133–153.CrossRefGoogle Scholar
  43. Kaneko, A. & Shimazaki, H. (1975) Synaptic transmission from photoreceptors to bipolar and horizontal cells in the carp retina. Cold. Spr. Harb. Symp. Quant. Biol. 40, 537–546.CrossRefGoogle Scholar
  44. Kaneko, A. & Yamada, M. (1972) S-potentials in the dark-adapted retina of the carp. J. Physiol. 227, 261–273.Google Scholar
  45. Karwoski, C.J. & Proenza, L.M. (1978) Light-evoked changes in extracellular potassium concentration in mudpuppy retina. Brain Res. 142, 513–530.Google Scholar
  46. Kühne, W. & Steiner, J. (1880) Uber das electromotorische Verhalten der Netzhaut. Unt. physiol. Inst. Univ., Heidelberg, 3, 327–377.Google Scholar
  47. Kühne, W. & Steiner, J. (1881) Uber electrische Vorgänge im Sehorgane, loc. cit. 4, 64–168.Google Scholar
  48. Lamb, T. D. & Simon, E. J. (1977) Analysis of electrical noise in turtle cones. J. Physiol. 272, 435–468.CrossRefGoogle Scholar
  49. Lasansky, A. (1971) Synaptic organization of cone cells in the turtle retina. Phil. Trans. 262, 365–381.CrossRefGoogle Scholar
  50. Leeper, H. F. & Copenhagen, D. R. (1979) Mixed rod-cone responses in horizontal cells of snapping turtle retina. Vision Res. 19, 407–412.CrossRefGoogle Scholar
  51. Miller, R. F. & Dowling, J. E. (1970) Intracellular responses of the Müller (glial) cells of mudpuppy retina: their relation to bwave of the electroretinogram. J. Neurophysiol. 33, 323–341.Google Scholar
  52. Murakami, M. & Kaneko, A. (1966) Differentiation of PIII subcomponents in cold blooded vertebrate retinas. Vision Res. 6, 627–636.CrossRefGoogle Scholar
  53. Murakami, M. & Pak, W. L. (1970) Intracellularly recorded early receptor potential of the vertebrate photoreceptors. Vision Res. 10, 965–975.CrossRefGoogle Scholar
  54. Naka, K. I. & Rushton, W. A. H. (1966) S-potentials from colour units in the retina of fish (Cypridinae), J. Physiol. 185, 536–555.CrossRefGoogle Scholar
  55. Naka, K. I. & Witkovsky, P. (1972) Dogfish ganglion cell discharge resulting from extrinsic polarization of the horizontal cells. J. Physiol. 223, 449–460.CrossRefGoogle Scholar
  56. Newman, E. A. (1979) B-wave currents in the frog retina. Vision Res. 19, 227–234.CrossRefGoogle Scholar
  57. Newman, E. A. (1980) Current source-density analysis of the b-wave of frog retina. J. Neurophysiol. 43, 1355–1366.Google Scholar
  58. Newman, E. A. & Odette, L. L. (1984) Model of electroretinogram b-wave generation: a test of the K+ hypothesis. J. Neurophysiol. 51, 164–182.Google Scholar
  59. Neyton, J., Piccolino, M. & Gerschenfeld, H. M. (1981) Involvement of small-field horizontal cells in feedback effects on green cones of the turtle retina. Proc. Nat. Acad. Sci. 78, 4616–4619.CrossRefGoogle Scholar
  60. Noell, W. K. (1954) The origin of the electroretinogram. Am. J. Ophthal. 38, 78–90.CrossRefGoogle Scholar
  61. Normann, R. A. & Pochobradsky, J. (1976) Oscillations in rod and horizontal cell membrane potential: evidence for feedback to rods in the vertebrate retina. J. Physiol. 261. 15–29.CrossRefGoogle Scholar
  62. Oakley, B. (1977) Potassium and the photoreceptor-dependent pigment epithelium hyperpolarization. J. Gen. Physiol. 70, 405–425.CrossRefGoogle Scholar
  63. Oakley, B. (1983) Effects of maintained illumination upon [K+]0 in the subretinal space of the isolated retina of the toad. Vision Res. 23, 1325–1337.CrossRefGoogle Scholar
  64. Oakley, B. & Green, D. G. (1976) Correlation of light-evoked changes in retinal extracellular potassium concentration with c-wave of the electroretinogram. J. Neurophysiol. 39, 1117–1133.Google Scholar
  65. Ohtsuka, T. (1983) Axons connecting somata and axon terminals of luminosity-type horizontal cells in the turtle retina: receptive field studies and intracellular injections of HRP. J. Comp. Neurol. 220, 191–198.CrossRefGoogle Scholar
  66. Penn, R. D. & Hagins, W. A. (1969) Signal transmission along retinal rods and the origin of the electroretinographic a-wave. Nature 233, 201–205.CrossRefGoogle Scholar
  67. Piccolino, M. (1986) Horizontal cell: historical controversies and new interest. Progr. Retinal Res. 5, 147–163.CrossRefGoogle Scholar
  68. Richter, A. & Simon, E. J. (1975) Properties of centre-hyperpolarizing, red-sensitive bipolar cells in the turtle retina. J. Physiol. 248, 317–334.CrossRefGoogle Scholar
  69. Schwartz, E. A. (1973) Organization of ON-OFF cells in the retina of the turtle. J. Physiol. 230, 1–14.CrossRefGoogle Scholar
  70. Schwartz, E. A. (1974) Responses of bipolar cells in the retina of the turtle. J. Physiol. 236, 211–224.CrossRefGoogle Scholar
  71. Schwartz, E. A. (1975a) Responses of single rods in the turtle. J. Physiol. 232, 503–514.CrossRefGoogle Scholar
  72. Schwartz, E. A. (1975b) Rod-rod interaction in the retina of the turtle. J. Physiol. 246, 617–638.CrossRefGoogle Scholar
  73. Schwartz, E. A. (1975c) Cones excite rods in the retina of the turtle. J. Physiol. 246, 639–651.CrossRefGoogle Scholar
  74. Schwartz, E. A. (1976) Electrical properties of the rod syncytium in the retina of the turtle. J. Physiol. 257, 379–406.CrossRefGoogle Scholar
  75. Sillman, A. J., Ito, H. & Tomita, T. (1969) Studies on the mass receptor potential of the isolated frog retina. I. Vision Res. 9, 1435–1442.CrossRefGoogle Scholar
  76. Simon, E. J. (1973) Two types of luminosity horizontal cells in the retina of the turtle. J. Physiol. 230, 199–211.CrossRefGoogle Scholar
  77. Steinberg, R. H. (1969) Comparison of the intraretinal b-wave and d.c. component in the area centralis of cat retina. Vision Res. 9, 317–331.CrossRefGoogle Scholar
  78. Steinberg, R. H., Schmidt, R. & Brown, K. T. (1970) Intracellular responses to light from cat pigment epithelium: origin of the electroretinogram c-wave. Nature 227, 728–730.CrossRefGoogle Scholar
  79. Stell, W. K. (1967) The structure and relationships of horizontal cells and photoreceptor-bipolar synaptic complexes in goldfish retina. Amer. J. Anat. 121, 401–424.CrossRefGoogle Scholar
  80. Stell, W. K. (1976) Functional polarization of horizontal cell dendrites in goldfish retina. Invest. Ophthal. 15, 895–908.Google Scholar
  81. Svaetichin, G. (1956) Spectral response curves from single cones. Acta physiol. Scand. 39, Suppl. 134, 17–46.Google Scholar
  82. Tomita, T. (1965) Electrophysiological study of the mechanisms subserving colour coding in the fish retina. Cold Spr. Harb. Symp. quant. Biol. 30, 559–566.CrossRefGoogle Scholar
  83. Tomita, T. (1976) Electrophysiological studies of retinal cell function. Invest. Ophthal. 15, 171–187.Google Scholar
  84. Toyoda, J., Nosaki, H. & Tomita, T. (1969) Light-induced resistance changes in single photoreceptors of Necturus and Gekko. Vision Res. 9, 453–463.CrossRefGoogle Scholar
  85. Toyoda, J. I., Hashimoto, H. & Ohtsu, K. (1973) Bipolar amacrine transmission in the carp retina. Vision Res. 13, 295–307.CrossRefGoogle Scholar
  86. Trifonov, Y. A. (1968) Study of synaptic transmission between photoreceptors and horizontal cells by means of electric stimulation of the retina. Biophysika, Moscow 13, NS (In Russian).Google Scholar
  87. Uga, S. & Smelser, G. K. (1973) Comparative study of the fine structure of retinal Müller cells in various vertebrates. Invest. Ophthal. 12, 434–448.Google Scholar
  88. Werblin, F. S. & Dowling, J. E. (1969) Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J. Neurophysiol. 32, 339–354.Google Scholar
  89. Witkowsky, P. & Dowling, J. E. (1969) Synaptic relationships in the plexiform layer of the carp retina. Zeit. Zellforsch. 100, 60–82.CrossRefGoogle Scholar
  90. Yagi, T. (1986) Interaction between the soma and axon terminal of retinal horizontal cells in Cyprinus carpio. J. Physiol. 375, 121–135.CrossRefGoogle Scholar
  91. Yamagida, T. & Tomita, T. (1982) Local potassium concentration changes in the retina and the electroretinographic (ERG) b-wave. Brain Res. 237, 479–483.CrossRefGoogle Scholar
  92. Zanen, A. (1973) Contribution à l’étude électrophysiologique des mécanismes protorecepteurs de l’oeil normale. Thesis, Univ. Brussels.Google Scholar
  93. Zanen, A. & Debecker, J. (1971) Visual pigments and melanin contributions to the fast photovoltage of the human eye. Vision Res. 11, 169–172.CrossRefGoogle Scholar
  94. Zanen, A. & Debecker, J. (1975) Wavelength sensitivity of the two components of the early receptor potential (ERP) of the human eye. Vision Res. 15, 107–112.CrossRefGoogle Scholar

Copyright information

© Hugh Davson 1990

Authors and Affiliations

  • Hugh Davson
    • 1
    • 2
    • 3
  1. 1.St. Thomas’s HospitalSouthampton University Medical SchoolsLondonUK
  2. 2.King’s CollegeLondonUK
  3. 3.University CollegeLondonUK

Personalised recommendations