Structural Basis of Dilatation of the Cervix

  • Richard M. Aspden
Chapter
Part of the Topics in Molecular and Structural Biology book series (TMSB)

Abstract

The uterine cervix forms the lower part of the uterus and provides a passage between the uterus and the vagina. It plays an active part in childbearing and delivery and is crucial to the successful outcome of this process. The primary function of the cervix during this time is mechanical. Following conception, it has to close the entrance to the uterus and maintain the fetus safe within until delivery, when it has to open wide to allow an easy passage for the neonate during labour. To reverse its roles in this way, its internal diameter increases by more than an order of magnitude during approximately the final 12 h prior to delivery (Friedman, 1967; Johnstone et al., 1974).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, B. D. and Broutman, L. J. (1980). Analysis and Performance of Fibre Composites. Wiley, New YorkGoogle Scholar
  2. Aspden, R. M. (1986). Relation between structure and mechanical behaviour of fibre-reinforced composite materials at large strains. Proc. R. Soc. Lond., A406, 287–298Google Scholar
  3. Aspden, R. M. (1987). The importance of a slit-like lumen cross-section for the mechanical function of the cervix. Br. J. Obstet. Gynaec., 94, 915–916Google Scholar
  4. Aspden, R. M. (1988a). The theory of fibre-reinforced composite materials applied to changes in the mechanical properties of the cervix during pregnancy. J. Theor. Biol., 130, 213–221Google Scholar
  5. Aspden, R. M. (1988b). Collagen organisation in the cervix and its relation to mechanical function. Collagen Rel. Res., 8, 103–112Google Scholar
  6. Aspden, R. M., Gleave, B. D. and Hukins, D. W. L. (1988). Dimensional measurements on images from a video camera or cassette recorder using a BBC microcomputer. J. Biomed. Eng., 10, 291–292Google Scholar
  7. Aspden, R. M. and Hukins, D. W. L. (1979). Determination of the direction of preferred orientation and the orientation distribution function of collagen fibrils in connective tissues from high-angle X-ray diffraction patterns. J. Appl. Crystallogr., 12, 306–311Google Scholar
  8. Ayad, S. and Weiss, J. B. (1987). In Jayson, M. I. V. (Ed.), The Lumbar Spine and Back Pain, 3rd edn. Churchill Livingstone, Edinburgh, pp. 100–137Google Scholar
  9. Bryant, W. M., Greenwell, A. B. and Weeks, P. M. (1968). Alterations in collagen organisation during dilatation of the cervix uteri. Surg. Gynaec. Obstet., 126, 27–39Google Scholar
  10. Cabrol, D., Huszar, G., Romero, R. and Naftolin, F. (1981). In Ellwood, D. A. and Anderson, A. B. M. (Eds), The Cervix in Pregnancy and Labour: Clinical and Biochemical Observations. Churchill Livingstone, Edinburgh, pp. 34–39Google Scholar
  11. Calder, A. A. (1981). In Ellwood, D. A. and Anderson, A. B. M. (Eds), The Cervix in Pregnancy and Labour: Clinical and Biochemical Observations. Churchill Livingstone, Edinburgh, pp. 103–122Google Scholar
  12. Conrad, J. T. and Ueland, K. (1976). Reduction of the stretch modulus of human cervical tissue by prostaglandin E2. Am. J. Obstet. Gynecol., 126, 218–223Google Scholar
  13. Cullen, B. M. and Harkness, R. D. (1960). The effect of hormones on the physical properties and collagen content of the rat uterine cervix. J. Physiol., 152, 419–436Google Scholar
  14. Danforth, D. N. (1947). The fibrous nature of the human cervix and its relation to the isthmic segment in gravid and non-gravid uteri. Am. J. Obstet. Gynec., 53, 541–557Google Scholar
  15. Danforth, D. N. (1954). The distribution and functional activity of the cervical musculature. Am. J. Obstet. Gynecol., 68, 1261–1270Google Scholar
  16. Danforth, D. N. (1983). The morphology of the human cervix. Clin. Obstet. Gynec., 26, 7–13Google Scholar
  17. Danforth, D. N., Buckingham, J. C. and Roddick, J. W. (1960). Connective tissue changes incident to cervical effacement. Am J. Obstet. Gynec., 80, 939–945Google Scholar
  18. Danforth, D. N., Veis, A., Breen, M., Weinstein, H. G., Buckingham, J. C. and Manalo, P. (1974). The effect of pregnancy and labour on the human cervix: changes in collagen, glycoproteins and glycosaminoglycans. Am. J. Obstet. Gynec., 120, 641–649Google Scholar
  19. Diamant, J., Keller, A., Baer, E., Litt, M. and Arridge, R. G. C. (1972). Collagen ultrastructure and its relationship to mechanical properties as a function of ageing. Proc. R. Soc. Lond., B180, 293–315Google Scholar
  20. Dorrington, K. L. (1980). The theory of viscoelasticity in biomaterials. Symp. Soc. Exp. Biol., 13, 289–314Google Scholar
  21. Elliott, D. H. (1965). Structure and function of mammalian tendon. Biol. Rev. Cambridge Phil. Soc., 40, 392–421Google Scholar
  22. Ellwood, D. A. and Anderson, A. B. M. (Eds) (1981). The Cervix in Pregnancy and Labour: Clinical and Biochemical Observations. Churchill Livingstone, EdinburghGoogle Scholar
  23. Ellwood, D. A., Anderson, A. B. M., Mitchell, M. D., Murphy, G. and Turnbull, A. C. (1981). In Ellwood, D. A. and Anderson, A. B. M. (Eds), The Cervix in Pregnancy and Labour: Clinical and Biochemical Observations. Churchill Livingstone, Edinburgh, pp. 57–73Google Scholar
  24. Fitzpatrick, R. J. (1977). Changes in cervical function at parturition. Annls Rech. Vet., 8, 438–449Google Scholar
  25. Friedman, E. A. (1967). Labour: Clinical Evaluation and Management. Appleton-Century-Crofts, New YorkGoogle Scholar
  26. Fry, P., Harkness, M. L. R. and Harkness, R. D. (1964). Mechanical properties of the collagenous framework of skin in rats of different ages. Am. J. Physiol., 206, 1425–1429Google Scholar
  27. Gelman, R. A. and Blackwell, J. (1974a). Collagen mucopolysaccharide interactions at acid pH. Biochim. Biophys. Acta, 342, 254–261Google Scholar
  28. Gelman, R. A. and Blackwell, J. (1974b). Interactions between mucopolysaccharides and cationic polypeptides in aqueous solution: hyaluronic acid, heparitin sulphate and keratan sulphate. Biopolymers, 13, 139–156Google Scholar
  29. Golichowski, A. M., King, S. R. and Mascaro, K. (1980). Pregnancy related changes in rat cervical glycosaminoglycans. Biochem. J., 192, 1–8Google Scholar
  30. Harkness, M. L. R. and Harkness, R. D. (1954). The collagen content of the reproductive tract of the rat during pregnancy and lactation. J. Physiol., 123, 492–500Google Scholar
  31. Harkness, M. L. R. and Harkness, R. D. (1959). Changes in the physical properties of the uterine cervix of the rat during pregnancy. J. Physiol., 148, 524–547Google Scholar
  32. Harkness, M. L. R. and Harkness, R. D. (1961). The mechanical properties of the uterine cervix of the rat during involution after parturition. J. Physiol., 156, 112–120Google Scholar
  33. Harkness, R. D. (1964). The physiology of the connective tissues of the reproductive tract. Int. Rev. Connect. Tiss. Res., 2, 155–211Google Scholar
  34. Harkness, R. D. and Nightingale, M. A. (1962). The extensibility of the cervix uteri of the rat at different times of pregnancy. J. Physiol., 160, 214–220Google Scholar
  35. Hendricks, C. H., Brenner, W. E. and Krauss, G. (1970). Normal cervical dilatation pattern in late pregnancy and labour. Am. J. Obstet. Gynecol., 106, 1065–1082Google Scholar
  36. Hollingsworth, M. (1981). In Ellwood, D. A. and Anderson, A. B. M. (Eds), The Cervix in Pregnancy and Labour: Clinical and Biochemical Observations. Churchill Livingstone, Edinburgh, pp. 13–33Google Scholar
  37. Hollingsworth, M. and Isherwood, C. N. M. (1977). Changes in the extensibility of the cervix of rat in late pregnancy produced by prostaglandin F2α, ovariectomy and steroid replacement. Br. J. Pharmacol., 61, 501P–502PGoogle Scholar
  38. Hollingsworth, M., Isherwood, C. N. M. and Foster, R. W. (1979). The effects of oestradiol benzoate, progesterone, relaxin and ovariectomy on cervical extensibility in the late pregnant rat. J. Reprod. Fert., 56, 471–477Google Scholar
  39. Hollingsworth, M. and Williams, L. M. (1979). Increase in the creep rate of rat cervix occurring just prior to parturition. J. Physiol., 301, 90P–91PGoogle Scholar
  40. Hooley, C. J. and Cohen, R. E. (1979). A model for the creep behaviour of tendon. Int. J. Biol. Macromol., 1, 123–132Google Scholar
  41. Hukins, D. W. L. (1982). In Weiss, J. B. and Jayson, M. I. V. (Eds), Collagen in Health and Disease. Churchill Livingstone, London, pp. 49–72Google Scholar
  42. Hukins, D. W. L. (1984). In Hukins, D. W. L. (Ed.), Connective Tissue Matrix. Macmillan, London, pp. 211–240Google Scholar
  43. Hukins, D. W. L. and Aspden, R. M. (1985). Composition and properties of connective tissues. Trends Biochem. Sci., 10, 260–264Google Scholar
  44. Hukins, D. W. L. and Aspden, R. M. (1989). In Yettram, A. L. (Ed.), Material Properties and Stress Analysis in Biomechanics. Manchester University Press, Manchester, pp. 44–59Google Scholar
  45. Hukins, D. W. L., Aspden, R. M. and Yarker, Y. E. (1984). Fibre reinforcement and mechanical stability in articular cartilage. Engng Med., 13, 153–156Google Scholar
  46. Huszar, G. (Ed.) (1986). The Physiology and Biochemistry of the Uterus in Pregnancy and Labour. CRC Press, Boca Raton, FloridaGoogle Scholar
  47. Huszar, G., Cabrol, D. and Naftolin, F. (1986). In Huszar, G. (Ed.), The Physiology and Biochemistry of the Uterus in Pregnancy and Labour. CRC Press, Boca Raton, Florida, pp. 297–306Google Scholar
  48. Jeronimidis, G. and Vincent, J. F. V. (1984). In Hukins, D. W. L. (Ed.), Connective Tissue Matrix. Macmillan, London, pp. 187–210Google Scholar
  49. Johnstone, F. D., Boyd, I. E., McArthy, T. G. and MClure Browne, J. C. (1974). The diameter of the uterine isthmus during the menstrual cycle, pregnancy and the puerperium. J. Obstet. Gynaec. Br. Commonwealth, 81, 558–562Google Scholar
  50. Jordan, J. A. and Singer, A. (1976). The Cervix. Saunders, LondonGoogle Scholar
  51. Kelly, A. (1973). Strong Solids, 2nd edn. Clarendon Press, Oxford, pp. 157–226Google Scholar
  52. Kleissl, H. P., van der Rest, M., Naftolin, F., Glorieux, F. H. and de Leon, A. (1978).Google Scholar
  53. Collagen changes in the human uterine cervix at parturition. Am. J. Obstet. Gynec., 130, 748–753Google Scholar
  54. Krenchel, H. (1964). Fibre Reinforcement. Akademisk Forlag, CopenhagenGoogle Scholar
  55. Leppert, P. C., Kellor, S., Cerreta, J., Hosannah, Y. and Mandl, I. (1983). The content of elastin in the uterine cervix. Arch. Biochem. Biophys., 222, 53–58Google Scholar
  56. MacConnaiil, M. A. (1951). The movements of bones and joints. 4. The mechanical structure of articular cartilage. J. Bone Jt Surg., B33, 251–257Google Scholar
  57. von Maillot, K., Stuhlsatz, H. W. and Gentsen, H. H. (1981). In Ellwood, D. A. and Anderson, A. B. M. (Eds), The Cervix in Pregnancy and Labour: Clinical and Biochemical Observations. Churchill Livingstone, Edinburgh, pp. 123–135Google Scholar
  58. von Maillot, K., Stuhlsatz, H. W., Mohanaradhakrishnan, V. and Greiling, H. (1979). Changes in the glycosaminoglycans distribution pattern in the human uterine cervix during pregnancy and labour. Am. J. Obstet. Gynec., 135, 503–506Google Scholar
  59. von Maillot, K. and Zimmerman, B. K. (1976). The solubility of collagen of the uterine cervix during pregnancy and labour. Arch. Gynäkol., 220, 275–280Google Scholar
  60. Minns, R. J., Soden, P. D. and Jackson, D. S. (1973). The role of the fibrous components and ground substance in the mechanical properties of biological tissues. J. Biomech., 6, 153–165Google Scholar
  61. Nachemson, A. L. and Evans, J. H. (1968). Some mechanical properties of the third human lumbar interlaminar ligament (ligamentum flavum). J. Biomech., 1, 211–220Google Scholar
  62. Öbrink, B. (1973). A study of the interactions between monomeric tropocollagen and glycosaminoglycans. Eur. J. Biochem., 33, 387–400Google Scholar
  63. Öbrink, B. and Sundelof, L.-O. (1973). The binding of glycosaminoglycans to collagen. Eur. J. Biochem., 37, 226–232Google Scholar
  64. Panagiotacopulos, N. D., Knauss, W. G. and Bloch, R. (1979). On the mechanical properties of human intervertebral disc. Biorheology, 16, 317–330Google Scholar
  65. Parry, D. M. and Ellwood, D. A. (1981). In Ellwood, D. A. and Anderson, A. B. M. (Eds), The Cervix in Pregnancy and Labour: Clinical and Biochemical Observations. Churchill Livingstone, Edinburgh, pp. 74–84Google Scholar
  66. Rigby, B. J., Hirai, N., Spikes, J. D. and Eyring, H. (1959). The mechanical properties of rattail tendon. J. Gen. Physiol., 43, 265–283Google Scholar
  67. Rorie, D. K. and Newton, N. (1967). Histologic and chemical studies of the smooth muscle in the human cervix and uterus. Am. J. Obstet. Gynec., 99, 466–469Google Scholar
  68. Rundgren, A. (1974). Physical properties of connective tissue as influenced by single and repeated pregnancies in the rat. Acta Physiol. Scand. Suppl., 417, 24–69Google Scholar
  69. Stys, S. J., Clewell, W. H. and Meschia, G. (1978). Changes in cervical compliance at parturition independent of uterine activity. Am. J. Obstet. Gynec., 130, 414–418Google Scholar
  70. Uldbjerg, N., Ekman, G., Malmström, A., Olsson, K. and Ulmsten, U. (1983). Ripening of the human uterine cervix related to changes in the collagen glycosaminoglycans and collagenolytic activity. Am. J. Obstet. Gynec., 147, 662–666Google Scholar
  71. Uldbjerg, N., Malmström, A., Ekman, G. and Ulmsten, U. (1985). The integrity of cervical collagen during pregnancy and labour. Gynecol. Obstet. Invest., 20, 68–73Google Scholar
  72. Viidik, A. (1970). In Spring, E., Jauheinen, T. and Honkavaara, T. (Eds), Proc. Int. Nordic Meeting Med. Biol. Eng., Otaniemi, pp. 200–202Google Scholar
  73. Williams, L. M., Hollingsworth, M. and Dixon, J. S. (1982). Changes in the tensile properties and fine structure of the rat cervix in late pregnancy and during parturition. J. Reprod. Fert., 66, 203–211229-260Google Scholar

Copyright information

© The Macmillan Press Ltd 1990

Authors and Affiliations

  • Richard M. Aspden

There are no affiliations available

Personalised recommendations