Skip to main content

An Hypothesis on the Bulbospinal Locomotor Column

  • Chapter
Neurobiology of Vertebrate Locomotion

Part of the book series: Wenner-Gren Center International Symposium Series ((WGS))

  • 337 Accesses

Abstract

Two properties of the spinal cord allow it to control, swimming of such animals as a lamprey, a dogfish, an eel or a frog embryo: the distributed capacity of cyclic generation (perhaps intrinsic for each halfsegment) and the ability to organize metachronal wave by local interaction of adjacent generators (Grillner, 1981). Neither one nor the other property is privilege of vertebrates. Indeed, metachronal wave is observed during swimming in movements of the comb plates of the ctenophore (Sleigh, 1968), in muscular activity of the leech (Weeks, Kristan, 1978; Weeks, 1981), in swimmeret movements of the crayfish (Stein, 1976), during locomotion of Multipeda (Smolyaninov, Karpovich, 1975). Unique feature of vertebrates (and some related animals) is arrangement of their axial nervous system in form of the nerve tube which is continuous in its intrinsic organization although has metameous inputs and outputs. Correspondingly, in this paper only mechanisms of locomotor control in vertebrates are considered. In particular, similarity of mechanisms employed by the axial nervous system to control both swimming of animals without appendages and terrestrial locomotion of tetrapods is discussed. In quadrupedal animals, capability of cyclic generation is restricted to enlargements of the spinal cord, interaction of multiple generators of one “half-enlargements” (Szekely, Czeh, 1971) is used to form the functional unit — synergy of a stepping limb, and there are additional oligosynaptic connections for interlimb coordination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bernstein, N. (1967). The Coordination and Regulation of Movements. Pergamin Press, Oxford.

    Google Scholar 

  • Blight, A.R. (1976). Undulatory swimming with and without waves of contraction. Nature, 264, 352–354.

    Article  CAS  PubMed  Google Scholar 

  • Brown, T.G. (1911). The intrinsic factors in the act of progression in mammal. Proc. Roy. Soc. B., 84, 308–319.

    Article  Google Scholar 

  • Brown, T.G. (1914). On the nature of the fundamental activity of the nervous centers, together with an analysis of the conditioning of rhythmic activity in progression, and a theory of evolution of function in the nervous system, J. Physiol. (Lond.), 48, 18–46.

    Article  CAS  Google Scholar 

  • Buchanan, J. and Cohen, A. (1982). Activities of identified inter-neurons, motoneurons, and muscle fibers during fictive swimming in the lamprey and the effects of reticulospinal and dorsal cell stimulation. J. Neurophysiol., 47, 948–960.

    CAS  PubMed  Google Scholar 

  • Droge, M.H. and Leonard, R.B. (1983a). Swimming pattern in intact and decerebrated stingrays. J. Neurophysiol., 50, 162–167.

    CAS  PubMed  Google Scholar 

  • Droge, M.H. and Leonard, R.B. (1983c). Organization of spinal motor nuclei in the stingray, Dasyatis sabina. Brain Res., 276, 201–211.

    Article  CAS  PubMed  Google Scholar 

  • Ganor, I. and Golani, I. (1980). Coordination and integration in the hindlimb step cycle of the rat: kinematic synergies. Brain Res., 195, 57–67.

    Article  CAS  PubMed  Google Scholar 

  • Gray, J. (1968). Animal Locomotion. Weidenfeld and Nicolson, London.

    Google Scholar 

  • Grillner, S. (1974). On the generation of locomotion in the spinal dogfish. Exp. Brain Res., 20, 159–170.

    Article  Google Scholar 

  • Grillner, S. (1981). Control of locomotion in bipeds, tetrapods, and fish. In Handbook of Physiology, sect. 1. (ed. V.B. Brooks). The Nervous System, Vol. II, Motor Control, pp. 1179–1236. American Physiological Society, Bethesda, Maryland.

    Google Scholar 

  • Grillner, S., McClellan, A., Sigvardt, K., Wallen, P. and Williams, T. (1982). On the neural generation of “fictive locomotion” in a lower vertebrate nervous system, in vitro. In Brain Stem Control of Spinal Mechanisms, (eds. B. Sjölund and A. Björklund). pp. 273–295. Elsevier Biomedical Press.

    Google Scholar 

  • Kazennikov, O.V., Selionov, V.A., Shik, M.L. and Yakovleva, G.V. (1979). Neurons of upper cervical segments responding to stimulation of the bulbar “locomotor strip”. Neurophysiology (Kiev), 11, 245–253.

    CAS  Google Scholar 

  • Kazennikov, O.V., Shik, M.L. and Yakovleva, G.V. (1980). Two pathways for the brain stem “locomotor influence” on the spinal cord. Sechenov Physiol. J. (Leningrad), 66 1260–1263.

    CAS  Google Scholar 

  • Kazennikov, O.V., Shik, M.L. and Yakovleva, G.V. (1983a). Responses of neurons of upper cervical segments in cat to stimulation of brain stem locomotor region with different frequencies. Neurophysiology (Kiev), 15, 355–361.

    CAS  Google Scholar 

  • Kazennikov, O.V., Shik, M.L. and Yakovleva, G.V. (1983b). Stepping movements elicited by stimulation of the dorsolateral funiculus in the cat spinal cord. Bull. exp. biol. med (Moscow), 96, No. 8, 8–10.

    CAS  Google Scholar 

  • Kazennikov, O.V., Shik, M.L. and Yakovleva, G.V. (1985). Synaptic responses of propriospinal neurons to stimulation of the stepping strip in the cat dorsolateral funiculus. Neurophysiology (Kiev), 17, 270–278.

    CAS  Google Scholar 

  • Lennard, P.R. and Stein, P.S.G. (1977). Swimming movements elicited by electrical stimulation of turtle spinal cord. 1. Low-spinal and intact preparations. J. Neuorphysiol., 40, 768–778.

    CAS  Google Scholar 

  • Leonard, R.B., Rudomin, P., Droge, M.H., Grossman, A.E. and Willis, W.D. (1979). Locomotion in the decerebrate stingray. Neurosci. Lett. 14, 315–319.

    Article  CAS  PubMed  Google Scholar 

  • Lundberg, A. (1981). Half-centres revisited. In Advances in Physiological Sciences, Vol. 1. (eds. J. Szentagothai, M. Palkovits and J. Hamorl), 155–167, Pergamon Press and Akademiai Klado, Budapest.

    Google Scholar 

  • Matsushita, M. , Ikeda, M. and Hosoya, Y. (1979). The location of spinal neurons with long descending axons (long descending propriospinal tract neurons) in the cat: a study with the horseradish peroxidase technique. J. comp. Neurol., 184, 63–79.

    Article  CAS  PubMed  Google Scholar 

  • Mori, S., Shik, M.L. and Yagodnitsyn, A.S. (1977). Role of pontine tegmentum for locomotor control in mesencephalic cat. J. Neuro-physiol., 40, 284–295.

    CAS  Google Scholar 

  • Roaf, H.E. and Sherrington, C.S. (1910). Further remarks on the spinal mammalian preparatioon. Quart. J. Physiol., 3, 209–211.

    Article  Google Scholar 

  • Roberts, A. and Clarke, J.D.W. (1982). The neuroanatomy of an amphibian embryo spinal cord. Phil. Trans. R. Soc. Lond. B., 296, 195–212.

    Article  CAS  Google Scholar 

  • Roberts, A., Kahn, J.A. , Soffe, S.R. and Clarke, J.D.W. (1981). Neural control of swimming in a vertebrate. Science, 213, 1032–1034.

    Article  CAS  PubMed  Google Scholar 

  • Selionov, V.A. and Shik, M.L. (1981). Responses of medullary neurons to microstimulation of the “locomotor strip” in cat. Neurophysiology (Kiev), 13, 275–282.

    CAS  Google Scholar 

  • Selionov, V.A. and Shik, M.L. (1984). Medullary locomotor strip and column in the cat. Neuroscience, 13, 1267–1278.

    Article  CAS  PubMed  Google Scholar 

  • Sherrington, CS. (1910). Flexion reflex of the limb, crossed extension reflex, and reflex stepping and standing. J. Physiol. (Lond.), 40, 28–121.

    Article  CAS  Google Scholar 

  • Sherrington, C.S. (1931). Quantitative management of contraction in lowest level coordination. Brain, 54, 1–28.

    Article  Google Scholar 

  • Shik, M.L. (1981). Control of locomotion. In Advances in Physiological Sciences, Vol. 1. (eds. J. Szentagothai, M. Palkovits and J. Hamori), 143–148. Pergamon Press and Akademiai Kiado, Budapest.

    Google Scholar 

  • Shik, M.L. (1983). Action of the brainstem locomotor region on spinal stepping generators via propriospinal pathways. In Spinal Cord Reconstruction. (eds. C.C. Kao, R.P. Bunge, and P.J. Reter), 421–434. Raven Press, New York.

    Google Scholar 

  • Shik, M.L. (1985). Locomotor region of the brainstem and hypothesis on “the locomotor column”. Uspekhi fiziol. nauk, 16, 76–95 (in Russian).

    CAS  Google Scholar 

  • Shik, M.L., Severin, F.V. and Orlovsky, G.N. (1966). Control of walking and running by means of electrical stimulation of the midbrain. Biophysics (Moscow), 11, 756–765.

    Google Scholar 

  • Shik, M.L. and Yagodnitsyn, A.S. (1977). The pontobulbar “locomotor strip”. Neurophysiology (Kiev), 9, 95–97.

    CAS  Google Scholar 

  • Sleigh, M. (1968). Metachronal co-ordination of the comb plates of the ctenophore Pleurobranchia. J. exp. Biol., 48, 111–125.

    Google Scholar 

  • Smolyaninov, V.V. and Karpovich, A.L. (1975). Kinematics of metachronal locomotion. I. Conf iguraitons. Biophysics (Moscow), 20, 925–930.

    Google Scholar 

  • Soffe, S.R., Clarke, J.D.W. and Roberts, A. (1983). Swimming and other centrally generated motor pattern in newt embryos, J. comp. Physiol., 152, 535–544.

    Article  Google Scholar 

  • Stein, P.S.G. (1976). Mechanisms of interlimb phase control. In Neural Control of Locomotion, (eds. R.M. Herman, S. Grillner, P.S.G. Stein and D.G. Stuart), 465–487. Plenum Press, New York.

    Chapter  Google Scholar 

  • Stein, P.S.G. (1978). Swimming movements elicited by electrical stimulation of the turtle spinal cord: the high spinal preparation. J. comp. Physiol., 124, 203–210.

    Article  Google Scholar 

  • Sukhanov, V.B. (1974). General System of Symmetrical Locomotion of Terrestrial Vertebrates and Some Features of Movement of Lower Tetrapods. Amerind, New Delhi.

    Google Scholar 

  • Szekely, G. (1968). Development of limb movements: embryological, physiological and model studies. In Growth of the Nervous System. (eds. G.E.W. Wolstenholme and M. O’Connor), 77–95. Churchill, London.

    Google Scholar 

  • Szekely, G. and Czeh, G. (1971). Muscle activities of partially innervated limbs during locomotion in ambystoma. Acta Physiol. Acad. Sci. Hung., 40, 269–286.

    CAS  Google Scholar 

  • Vasilenko, D.A., Maisky, V.A. and Savoskina, L.A. (1984). Spatial distribution of descending propriospinal tract neurons in the spinal cord of cat. Neurophysiology (Kiev), 16, 96–105.

    CAS  Google Scholar 

  • Waller, W.H. (1940). Progression movements elicited by subthalamic stimulation. J. Neurophysiol., 3, 300–307.

    Google Scholar 

  • Weeks, J.C. (1981). Neuronal basis of leech swimming: separation of swim initiation, pattern generation and intersegmental coordination by selective lesions. J. Neurophysiol., 45, 698–723.

    CAS  PubMed  Google Scholar 

  • Weeks, J.C. and Kristan, W.B., Jr. (1978), Initiation, maintenance and modulation of swimming in the medicinal leech by the activity of a single neurone. J. exp. Biol., 77, 71–88.

    Google Scholar 

  • Yamaguchi, T. (1981). Fictive stepping evoked by electrical stimulation of the white matter of the cervical cord in decerebrate cats. J. Physiol. Soc, Japan, 43, 303 (Abstr. No. 108).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1986 The Wenner-Gren Center

About this chapter

Cite this chapter

Shik, M.L. (1986). An Hypothesis on the Bulbospinal Locomotor Column. In: Grillner, S., Stein, P.S.G., Stuart, D.G., Forssberg, H., Herman, R.M. (eds) Neurobiology of Vertebrate Locomotion. Wenner-Gren Center International Symposium Series. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-09148-5_3

Download citation

Publish with us

Policies and ethics