Skip to main content

Segmental and Suprasegmental Contributions to Development and Recovery of Motor Function in Kittens

  • Chapter
Neurobiology of Vertebrate Locomotion

Part of the book series: Wenner-Gren Center International Symposium Series ((WGS))

  • 343 Accesses

Abstract

The development of the central control of motor function is, presumably, mediated by the development of three classes of neuronal pathways: 1) intrinsic spinal systems; 2) reflex afferents; and 3) descending supraspinal and propriospinal tracts. In the cat, none of these three systems is fully developed at birth and the contribution made by each, as it matures, to developing motor behavior is incompletely understood. In the first part of this century, it was apparently assumed that segmental organization was well-developed at birth and, therefore, that postnatal motor development was a reflection only of the maturation of descending pathways (Windle et al., 1934, Langworthy, 1929). The extent to which the spinal cord could mediate motor function autonomously was not yet appreciated. The demonstration that developing stretch reflex input and, in particular, its fusimotor component, plays an important role in some aspects of motor development (Skoglund, 1969) was an important step in establishing the importance of the segmental organization of the spinal cord for motor development. In the past twenty years, the primacy of intrinsic spinal pathways in the generation of motor behavior has been firmly established (Grillner, 1975, 1976, 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amassian, V.E. (1979). The use of contact placing in analytic and synthetic studies of the higher sensorimotor control system. In Integration in the nervous system. (eds. H. Asanuma and V.J. Wilson). Tokyo:Igaka-Shoin.

    Google Scholar 

  • Amassian, V.E. and Ross, R.J. (1978). Developing role of sensorimotor cortex and pyramidal tract neurons in contact placing in kittens. J. Physiol., 74, 165–184.

    CAS  Google Scholar 

  • Bard, P. (1933). Studies on the cerebral cortex. I. Localized control of placing and hopping reactions in the cat and their normal management by small cortical remmants. Arch. Neurol. Psych., 30, 40–74.

    Article  Google Scholar 

  • Bernstein, D.R. and Stelzner, D.J. (1984). Plasticity of the corticospinal tract following mid-thoracic spinal cord injury in the neonatal rat. J. Comp. Neur., 221, 382–401.

    Article  Google Scholar 

  • Bradley, N.S., Smith, J.L. and Villablanca, J.R. (1983). Absence of hindlimb tactile placing in spinal cats and kittens. Exp. Neur., 82, 1–16.

    Article  Google Scholar 

  • Bregman, B. and Goldberger, M.E. (1982). Anatomical plasticity and sparing of function after spinal cord damage in neonatal cats. Science, 217, 553–555.

    Article  CAS  PubMed  Google Scholar 

  • Bregman, B.S. and Reier, P. (1982). Transplantation of fetal spinal cord tissue to injured spinal cord in neonatal and adult rats. Soc. Neurosci. Abst., 8, 870.

    Google Scholar 

  • Bregman, B.S. and Goldberger, M.E. (1983). Infant lesion effect: I. Development of motor behavior following neonatal spinal cord damage in cats. Dev. Brain Res., 9, 103–117.

    Article  Google Scholar 

  • Bregman, B.S. and Goldberger, M.E. (1983). Infant lesion effect: II. Sparing and recovery of function after spinal cord damage in newborn and adult cats. Dev. Brain Res., 9, 229–235.

    Google Scholar 

  • Bregman, B.S. and Goldberger, M.E. (1983). Infant lesion effect: III. Anatomical correlates of sparing and recovery of function after spinal cord damage. Dev. Brain Res., 9, 137–154.

    Article  Google Scholar 

  • Carlson, M. (1984). Development of tactile discrimination capacity in Macaca Mullata. II. Effects of parietal removal of primary somatic sensory cortex (SMI) in infants and juveniles. Dev. Brain Res., 16, 83–101.

    Article  Google Scholar 

  • Carlson, M. (1984). Developmental tactile discrimination capacity in Macaca Mullata. III. Effects of total removal of primary somatic sensory cortex (SMI) in infants and juveniles. Dev. Brain Res., 16, 103–117.

    Article  Google Scholar 

  • Chambers, W.W., Liu, C.N., McCouch, G.P. and DpAquili, E. (1966). Descending tracts and spinal shock in the cat. Brain, 89, 337–390.

    Article  Google Scholar 

  • Commissiong, J.W. (1983). Development of catecholaminergic nerves in the spinal cord of the rat. Brain Res., 264, 197–208.

    Article  CAS  PubMed  Google Scholar 

  • Cunningham, T.J. and Murphy, E.H. (1979). Ontogeny of sensory systems. In Handbook of Behavioral Neurobiology. (ed. R.B. Masterton). Plenum, New York.

    Google Scholar 

  • Donatelle, J.M. (1977). Growth of the CST and the development of placing reactions in the postnatal rat. J. Comp. Neurol., 175, 207–232.

    Article  CAS  PubMed  Google Scholar 

  • Finger, S., Simons, D. and Posner, R. (1978). Anatomical, physiological and behavioral effects of neonatal sensorimotor cortex ablation in the rat. Exp. Neur., 60, 347–373.

    Article  CAS  Google Scholar 

  • Forssberg, H. and Grillner, S. (1973). The locomotion of the acute spinal cat injected with clondine I.V. Brain Res., 50, 184–186.

    Article  CAS  PubMed  Google Scholar 

  • Forssberg, H., Grillner, S. and Sjostrom, A. (1974). Tactile placing reactions in chronic spinal kittens. Acta. Physiol. Scand., 92, 114–120.

    Article  CAS  PubMed  Google Scholar 

  • Giuliani, C.A., Carter, M.C. and Smith J.L. (1984). Return of weight-supported locomotion in adult spinal cats. Neurosci. Abst., 10, 632.

    Google Scholar 

  • Giuliani, C.A. and Smith, J.L. (1985). Development and characteristics of air-stepping in chronic spinal cats. J. Neurosci., 5, 1276–1282.

    CAS  PubMed  Google Scholar 

  • Goldberger, M.E. (1977). Locomotor recovery after unilateral hindlimbs deafferentation in cats. Brain Res., 123, 59–74.

    Article  CAS  PubMed  Google Scholar 

  • Goldberger, M.E. (1983). Recovery of accurate limb movements after deafferentation in cats. In Spinal Cord Reconstruction. (eds. C.C. Kao, R. Bung and P. Reier). Raven Press, New York.

    Google Scholar 

  • Goldberger, M.E. (1985). Autonomous spinal motor function and the infant lesion effect. In Development and Plasticity of the Mammalian Spinal Cord. (eds. Goldberger, Gorio and Murray). Liviana Press, Italy.

    Google Scholar 

  • Goldberger, M.E., Coleman, E.P. and Segal, S. (1985). Plasticity in the serotinin (5HT) system of the cat spinal cord. Anat. Rec., 211(3), 70–71.

    Google Scholar 

  • Goldberger, M.E. and Murray, M. (1978). Axonal sprouting and recovery of function may obey some of the same laws. In Neuronal Plasticity. (eds. C. Cotman). Raven Press, New York.

    Google Scholar 

  • Goldberger, M.E. and Murray, M. (1982). Lack of sprouting and its presence after lesion of the cat spinal cord. Brain Res., 241, 227–239.

    Article  CAS  PubMed  Google Scholar 

  • Goldberger, M.E. and Murray, M. (1985). Recovery after damage to the adult and neonatal spinal cord. In Synaptic Plasticity. (ed. C. Cotman). Guilford Press, New York.

    Google Scholar 

  • Gomez, F.E., Villablanca, J.R., Somier, B.J. and Levine, M.S. (1984). Autoradiographic tracing of corticospinal projections in cats with neonatal or adult ablation of one cerebral hemisphere. Neurosci. Abst., 10, 1017.

    Google Scholar 

  • Grillner, S. (1975). Locomotion in vertebrates: Central mechanisms and reflex interactions. Physiol. Rev., 55, 247–304.

    CAS  PubMed  Google Scholar 

  • Grillner, S. (1976). Some aspects of the descending control of the spinal circuits generating locomotion movements. In Neural Control of Locomotion. (ed. R. Herman et al). Plenum, New York.

    Google Scholar 

  • Grillner, S. (1981). Control of locomotion in bipeds, tetrapods and fish. In Handbook of Physiology. (ed. V.B. Brooks). Williams and Wilkins, Baltimore.

    Google Scholar 

  • Innocenti, G.M. (1981). Growth and reshaping of axons in the establishment of visual callosal connections. Science, 212, 824–827.

    Article  CAS  PubMed  Google Scholar 

  • Ivy, G.O. and Killackey, H.P. (1981). The ontogeny of the distribution of callosal projection neurons in the rat parietal cortex. J. Comp. Neur., 195, 367–389.

    Article  CAS  PubMed  Google Scholar 

  • Hicks, S.P. and D’Amato. (1970). Motor sensory and visual behavior after hemispherectomy in newborn and adult rats. Exp. Neur., 29, 416–438.

    Article  CAS  Google Scholar 

  • Kalil, K. and Reh T. (1982). A light and electron microscopic study of regrowing pyramidal tract fibers. J. Comp. Neur., 211, 265–275.

    Article  CAS  PubMed  Google Scholar 

  • Langworthy, O.R. (1929). A correlated study of development of reflex activity in fetal and young kittens and the myelination of tracts in the nervous system. Contrib. Embryol. Carnegie Inst., 20, 127–171.

    Google Scholar 

  • Leonard, C.T., Robinson, G.A. and Goldberger, M.E. (1984). The exuberance of youth: An analysis of corticothalamic, corticospinal and corticorubral projections in one day old cats. Soc. Neurosci. Abst., 10, 322.

    Google Scholar 

  • Lovely, R.G., Gregor, R.J., Roy, R.R. and Edgerton, V.R. (1985). Training effects on the recovery of full weight-bearing stepping adult spinal cats. Neurosci. Abst., 11, 1101.

    Google Scholar 

  • Martin, G.F., Cabana, T., Ditirro, F.J., Ho, R.H. and Humbertson, A.O. (1982). The development of descending spinal connections. Studies using the North American oppossum. Prog. Brain Res., 57, 131–145.

    Article  CAS  PubMed  Google Scholar 

  • McCouch, G.P., Austin, G.M., Liu, C.N. and Liu, C.Y. (1958). Sprouting as a cause of spasticity. J. Neurophysiol., 21, 205–216.

    CAS  PubMed  Google Scholar 

  • Murray, M. and Goldberger, M.E. (1985). Replacement of synaptic terminals in lamina II and Clarke’s nucleus after unilateral lumbosacral dorsal thizotomy in adult cats. J. Neurosci. In Press

    Google Scholar 

  • Rademaker, V.G.G.J. (1931). Standing: Static reactions, equilibrium and muscle tonus, with special consideration of their retention in animals without a cerebellum. Translated by A. Mussen. Arch Neur., 28, 141–163.

    Google Scholar 

  • Robinson, G.A. and Goldberger, M.E. (1985). Interferring with inhibition may improve motor function. Brain Res., 346, 400–403.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, G.A. and Goldberger, M.E. (1985a). The development and recovery of motor function in spinal cats. I. The infant lesion effect. Exp. Brain Res., In press.

    Google Scholar 

  • Robinson, G.A. and Goldberger, M.E. (1985b). The development and recovery of motor function in spinal cats. II. Pharmacological enchancement of recovery. Exp. Brain Res., In press.

    Google Scholar 

  • Roy, R.R., Gregor, R.J., Lovely, R.G., Baldwin, K.M. and Edgerton, V.R. (1985). Long term exercise effects on the mechanical properties of the soleus muscle in adult spinal cats. Neurosci. Abst., 11, 1101.

    Google Scholar 

  • Schreyer, D.J. and Jones, E.G. (1983). Growing corticospinal axons bypass lesions of neonatal rat spinal cord. Neuroscience, 9, 31–40.

    Article  CAS  PubMed  Google Scholar 

  • Skoglund, S. (1969). Reflex maturation. In The Interneuron. (ed. Brazier, M.A.B.). UCLA Press, Los Angeles.

    Google Scholar 

  • Smith, J.L., Bradley, N.S., Carter, M.C., Giuliani, C.A., Hoy, M.G., Koshland, G.F. and Zernicke, R.F. (1985). Rhythmical movements of the hindlimbs in spinal cat: Considerations for a controlling network. In Development and Plasticity of the Mammalian Spinal Cord. (eds. M.E. Goldberger, Gorio, and M. Murray). Liviana Press, Italy.

    Google Scholar 

  • Smith, J.L., Smith, L.A., Zerniche, R.F. and Hoy, M. (1982). Locomotion in exercised and non-exercised cats cordotomized at 2 or 12 weeks. Exp. Neur., 76, 393–413.

    Article  CAS  Google Scholar 

  • Stanfeld, B.B., O’Leary, D.D.M. and Fricks, C. (1982). Selective collateral elimination in early postnatal development restricts cortical distribution of rat pyramidal tract neurons. Nature, 298, 371–373.

    Article  Google Scholar 

  • Stavraki, G.W. (1961). Supersensitivity following lesions of the nervous system. University of Toronto Press, Canada.

    Google Scholar 

  • Stelzner, D.J. (1982). The role of descending systems in maintaining intrinsic spinal function: A developmental approach. In Brain Stem Control of Spinal Mechanisms. (eds. B. Sjolund and A. Bjorklund). Elsevier Biomedical Press, Amsterdam.

    Google Scholar 

  • Stelzner, D.J., Weber, E.D. and Prendergast. (1979). A comparison of the effect of mid-thoracic spinal hemisection in the neonatal or weanling rat on the distribution and density of dorsal root axons in the lumbosacral spinal cord of the adult. Brain Res., 172, 407–426.

    Article  CAS  PubMed  Google Scholar 

  • Thor, K., Kawatani, M. and de Groat, W.C. (1985). Plasticity in the reflex pathways to the lower urinary tract of the cat during postnatal development and following spinal cord injury. In Development and Plasticity of the Mammalian Spinal Cord. (eds. M.E. Goldberger, A. Gorio and M. Murray). Liviana Press, Italy.

    Google Scholar 

  • Tsukahara, N. (1981). Synaptic plasticity in the mammalian central nervous system. Ann. Rev. Neurosci., 4, 351–379.

    Article  CAS  PubMed  Google Scholar 

  • Viala, D., Viala, G. and Fayein, N. (1985). Plasticity of locomotor organization in infant rabbits spinalized shortly after birth. In Development and Plasticity of the Mammalian Spinal Cord. (eds. M.E. Goldberger, A. Gorio and M. Murray). Liviana Press, Italy.

    Google Scholar 

  • Villablanca, J., Olmstead, CE., Levine, M.S. and Marcus, R.J. (1978). Effects of caudate nuclei or frontal cortical ablations in kittens: Neurology and gross behavior. Exp. Neur., 61, 6±5–634.

    Google Scholar 

  • Wall, P.D. (1984). The dorsal horn. In Textbook of Pain. (eds. P.D. Wall and R. Melzack). Churchill Livingstone, New York.

    Google Scholar 

  • Wilson, V.J. (1962). Reflex transmission in the kitten. J. Neurophysiol., 25, 263–276.

    CAS  PubMed  Google Scholar 

  • Windle, W.F., Fish, M.W. and O’Donneil, J.E. (1934). Myelogeny of the cat as related to development of fiber tracts and prenatal behavior patterns. J. Comp. Neur., 59, 139–157.

    Article  Google Scholar 

  • Windle, W.F., Smart, J.O. and Beers, J.J. (1958). Residual function after subtotal spinal cord transection in adult cats. Neurology, 8, 518–521.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1986 The Wenner-Gren Center

About this chapter

Cite this chapter

Goldberger, M.E. (1986). Segmental and Suprasegmental Contributions to Development and Recovery of Motor Function in Kittens. In: Grillner, S., Stein, P.S.G., Stuart, D.G., Forssberg, H., Herman, R.M. (eds) Neurobiology of Vertebrate Locomotion. Wenner-Gren Center International Symposium Series. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-09148-5_29

Download citation

Publish with us

Policies and ethics