Advertisement

Strategies to Identify Interneurons Involved in Locomotor Pattern Generation in the Mammalian Spinal Cord

  • Robert E. Burke
  • J. W. Fleshman
Part of the Wenner-Gren Center International Symposium Series book series (WGS)

Abstract

The mammalian spinal cord contains intrinsic neural systems capable of producing rhythmic alternating activity in limb flexor and extensor motor nuclei (see also Grillner, 1981; Stein, 1984) which can mimic the activity of muscles during locomotion or scratch in considerable, though perhaps not perfect, detail, even when phasic sensory inflow is interrupted by dorsal rhizotomy or curarization (Grillner and Zangger, 1975, 1979, 1984; Deliagina et al., 1975). Since much of the neuronal machinery for this behavior resides in spinal segments (Jankowska et al., 1967a; Grillner and Zangger, 1979; Deliagina et al., 1983), it is relatively accessible to experimental analysis and manipulation. Thus the locomotor-like patterns that can be evoked in neurologically reduced, immobilized animals (e.g. decorticate: Perret, 1976; decerebrate: Shik et al., 1966; Severin et al., 1967; spinal: Grillner, 1973; Edgerton et al., 1976) provide model systems for studying cellular mechanisms underlying central pattern generation using intra- and extracellular unit recording techniques.

Keywords

Tibialis Anterior Recurrent Inhibition Flexor Hallucis Longus Renshaw Cell Spinal Interneuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anden, N.-E., Jukes, M.G.M., Lundberg, A. and Vyklicky, L. (1966). The effect of DOPA on the spinal cord. I. Influence on transmission from primary afferents. Acta Physiol. Scand. 67, 373–386.Google Scholar
  2. Arshavsky, Y.I., Berkinblit, M.B., Fukson, O.I., Gelfand, I.M. and Orlovsky, G.N. (1972). Origin of modulation in neurons of the ventral spinocerebellar tract during locomotion. Brain Res. 43, 276–279.CrossRefPubMedGoogle Scholar
  3. Baidissera, F., Hultborn, H. and Illert, M. (1981). Integration in spinal neuronal systems. In Handbook of Physiology, Sect. 1, The Nervous System; Vol. III. Motor Control, Part 1. (ed. V.B. Brooks). Am. Physiol. Soc, Washington, pp. 509–595.Google Scholar
  4. Bayev, K.V., Degtyarenko, A.M., Zavadskaya, T.V. and Kostyuk, P.G. (1979). Activity of lumbar interneurons during late long-lasting discharges in motor nerves of immobilized thalamic cats. Neurophysiol. 11, 173–178 (trans.).CrossRefGoogle Scholar
  5. Bayev, K.V., Degtyarenko, A.M., Zavadskaya, T.V. and Kostyuk, P.G. (1979). Activity of lumbar interneurons during fictitious locomotion in thalamic cats. Neurophysiol. 11, 244–250 (trans.).CrossRefGoogle Scholar
  6. Bayev, K.V. and Kostyuk, P.G. (1981). Primary afferent depolarization evoked by the activity of spinal scratching generator. Neurosci. 6, 205–215.CrossRefGoogle Scholar
  7. Bayev, K.V. and Kostyuk, P.G. (1982). Polarization of primary afferent terminals of lumbosacral cord elicited by the activity of spinal locomotor generator. Neurosci. 7, 1401–1409.CrossRefGoogle Scholar
  8. Bergmans, J., Burke, R. and Lundberg, A. (1969). Inhibition of transmission in the recurrent inhibitory pathway to motoneurones. Brain Res. 13, 600–602.CrossRefPubMedGoogle Scholar
  9. Berkinblit, M.B., Deliagina, T.G., Orlovsky, G.N. and Feldman, A.G. (1980). Activity of motoneurons during fictitious scratch reflex in the cat. Brain Res. 193, 427–438.CrossRefPubMedGoogle Scholar
  10. Brink, E., Harrison, P.J., Jankowska, E., McCrea, D.A. and Skoog, B. (1983). Post-synaptic potentials in a population of motoneurones following activity of single interneurones in the cat. J. Physiol. 343, 341–359.PubMedCentralCrossRefPubMedGoogle Scholar
  11. Brown, A.G. (1981). Organization in the Spinal Cord. Springer-Verlag, Berlin, 238 pp.CrossRefGoogle Scholar
  12. Brown, A.G. and Fyffe, R.E.W. (1981). Form and function of dorsal horn neurones with axons ascending the dorsal columns in cat. J. Physiol. 321, 31–47.PubMedCentralCrossRefPubMedGoogle Scholar
  13. Burke, R.E., Jankowska, E. and Bruggencate, G. ten (1970). A comparison of peripheral and rubrospinal synaptic input to slow and fast twitch motor units of triceps surae. J. Physiol. 207, 709–732.PubMedCentralCrossRefPubMedGoogle Scholar
  14. Burke, R.E. and Rudomin, P. (1977). Spinal neurons and synapses. In Handbook of Physiology, Sect. 1, The Nervous System; Vol. I. The Cellular Biology of Neurons, (ed. E.R. Kandel). Am. Physiol. Soc, Washington, pp. 877–944.Google Scholar
  15. Burke, R.E., Rymer, W.Z. and Walsh, J.V. (1973). Functional specialization in the motor unit population of cat medial gastrocnemius muscle. In Control of Posture and Locomotion. (eds. R.B. Stein, K.B. Pearson, R.S. Smith and J.B. Redford) Plenum Press, New York, pp. 29–44.CrossRefGoogle Scholar
  16. Cohen, A.H. and Harris-Warrick, R.M. (1984). Strychnine eliminates alternating motor output during fictive locomotion in the lamprey. Brain Res. 293, 164–167.CrossRefPubMedGoogle Scholar
  17. Cullheim, S. and Kellerth, J.-O. (1981). Two kinds of recurrent inhibition of cat spinal α-motoneurones as differentiated pharmacologically. J. Physiol. 312, 209–224.PubMedCentralCrossRefPubMedGoogle Scholar
  18. Cullheim, S., Kellerth, J.-O. and Conradi, S. (1977). Evidence for direct synaptic interconnections between cat spinal H.-motoneurons via the recurrent axon collaterals: A morphological study using intracellular injection of horseradish peroxidase. Brain Res. 132, 1–10.CrossRefPubMedGoogle Scholar
  19. Deliagina, T.G., Feldman, A.G., Gelfand, I.M. and Orlovsky, G.N. (1975). On the role of central program and afferent inflow in the control of scratching movements in the cat. Brain Res. 100, 297–313.CrossRefGoogle Scholar
  20. Deliagina, T.G., Orlovsky, G.N. and Pavlova, G.A. (1983). The capacity for generation of rhythmic oscillations is distributed in the lumbosacral spinal cord of the cat. Exp. Brain Res. 53, 81–90.CrossRefPubMedGoogle Scholar
  21. Duenas, S.H. and Eidelberg, E. (1979). Bicuculline induces stepping in decerebrate cats. Soc. Neurosci. Abstr. 5, 721.Google Scholar
  22. Eccles, J.C., Fatt, P. and Koketsu, K. (1954). Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. J. Physiol. 126, 524–562.PubMedCentralCrossRefPubMedGoogle Scholar
  23. Eccles, J.C., Fatt, P. and Landgren, S. (1956). The central pathway for the direct inhibitory action of impulses in the largest afferent fibers to muscle. J. Neurophysiol. 19, 75–98.PubMedGoogle Scholar
  24. Eccles, R.M. and Lundberg, A. (1959). Synaptic actions in motoneurones by afferents which may evoke the flexion reflex. Arch. Ital. Biol. 97 199–221.Google Scholar
  25. Edgerton, V.R., Grillner, S., Sjostrom, A. and Zangger, P. (1976). Central generation of locomotion in vertebrates. In Neural Control of Locomotion. (eds. R.M. Herman, S. Grillner, P.S.G. Stein and D.G. Stuart). Plenum Press, New York, pp. 439–464.CrossRefGoogle Scholar
  26. Engberg, I. (1964). Reflexes to foot muscles in the cat. Acta Physiol. Scand. 62, Suppl. 235:1–64.Google Scholar
  27. Engberg, I. and Lundberg, A. (1969). An electromyographic analysis of muscular activity in the hindlimb of the cat during unrestrained locomotion. Acta Physiol. Scand. 75, 614–630.CrossRefPubMedGoogle Scholar
  28. Feldman, A.G. and Orlovsky, G.N. (1975). Activity of interneurons mediating reciprocal Ia inhibition during locomotion. Brain Res. 84, 181–194.CrossRefPubMedGoogle Scholar
  29. Fleshman, J. W., Lev-Tov, A. and Burke, R.E. (1984). Peripheral and central control of flexor digitorum longus and flexor hallucis longus motoneurons: The synaptic basis of functional diversity. Exp. Brain Res. 54, 133–149.CrossRefPubMedGoogle Scholar
  30. Fleshman, J.W., Rudomin, P. and Burke, R.E. Supraspinal conditioning of short-latency cutaneous pathways to lumbar motoneurons. Soc. Neurosci. Abstr. 11 in press.Google Scholar
  31. Fu, T.-C. Jankowska, E. and Lundberg, A. (1975). Reciprocal la inhibition during the late reflexes evoked from the flexor reflex afferents after DOPA. Brain Res. 815, 99–102.CrossRefGoogle Scholar
  32. Graham Brown, T. (1911). The intrinsic factors in the act of progression in the mammal. Proc. Roy. Soc. B 34, 308–319.CrossRefGoogle Scholar
  33. Grillner, S. (1973). Locomotion in the spinal cat. In Control of Posture and Locomotion, (eds. R.B. Stein, K.G. Pearson, R.S. Smith and J.B. Redford). Plenum Press, New York, pp. 515–535.CrossRefGoogle Scholar
  34. Grillner, S. (1981). Control of locomotion in bipeds, tetrapods and fish. In Handbook of Physiology. Sec. 1: The Nervous System. Vol. II. Motor Control. Part2. (Ed. V.B. Brooks). Am. Physiol. Soc, pp. 1179–1236.Google Scholar
  35. Grillner, S. and Zangger, P. (1975). How detailed is the central pattern generation for locomotion? Brain Res. 88, 367–371.CrossRefPubMedGoogle Scholar
  36. Grillner, S. and Zangger, P. (1979). On the central generation of locomotion in the low spinal cat. Exp. Brain Res. 34, 241–261.CrossRefPubMedGoogle Scholar
  37. Grillner, S. and Zangger, P. (1984). The effect of dorsal root transection on the efferent motor pattern in the cat’s hindlimb during locomotion. Acta Physiol. Scand. 120, 393–406.CrossRefPubMedGoogle Scholar
  38. Hagbartn, K.-E. (1952). Excitatory and inhibitory skin areas for flexor and extensor motoneurons. Acta Physiol. Scand. 26, Suppl. 94, 1–58.Google Scholar
  39. Hart, B.L. (1971). Facilitation by strichnine of reflex walking in spinal dogs. Physiol. Behav. 6, 627–628.CrossRefPubMedGoogle Scholar
  40. Hultborn, H., Jankowska, E. and Lindstrom, S. (1971a). Recurrent inhibition from motor axon collaterals of transmission in the la inhibitory pathway to motoneurones. J. Physiol. 215, 591–612.PubMedCentralCrossRefPubMedGoogle Scholar
  41. Hultborn, H., Jankowska, E. and Lindstrom, S. (1971b). Recurrent in hibitionof interneurones monosynaptically activated from group la afferents. J. Physiol. 215, 613–636.PubMedCentralCrossRefPubMedGoogle Scholar
  42. Hultborn, H., Jankowska, E. and Lindstrom, S. (1971c). Relative contribution from different nerves to recurrent depression of Ia IPSPs in motoneurones. J. Physiol. 215, 637–664.PubMedCentralCrossRefPubMedGoogle Scholar
  43. Illert, M., Lundberg, A. and Tanaka, R. (1976). Integration in descending motor pathways controlling the forelimb in the cat. 2. Convergence on neurones mediating disynaptic cortico-motoneuronal excitation. Exp. Brain Res. 26, 521–540.PubMedGoogle Scholar
  44. Jankowska, E., Johannisson, T. and Lipski, J. (1981). Common interneurones in reflex pathways from group Ia and Ib afferents of ankle extensors in the cat. J. Physiol. 310, 381–402.PubMedCentralCrossRefPubMedGoogle Scholar
  45. Jankowska, E., Jukes, M.G.M., Lund, S. and Lundberg, A. (1967a). The effect of DOPA on the spinal cord. 5. Reciprocal organization of pathways transmitting excitatory action to alpha motoneurones of flexors and extensors. Acta Physiol. Scand. 70, 369–388.CrossRefPubMedGoogle Scholar
  46. Jankowska, E., Jukes, M.G.M., Lund, S. and Lundberg, A. (1967b). The effect of DOPA on the spinal cord. 6. Half-centre organization of interneurones transmitting effects from the flexor reflex afferents. Acta Physiol. Scand. 70, 389–402.CrossRefPubMedGoogle Scholar
  47. Jankowska, E., McCrea, D. and Mackel, R. (1981). Pattern of ‘non-reciprocal’ inhibition of motoneurones by impulses in group la muscle spindle afferents in the cat. J. Physiol. 316, 393–409.PubMedCentralCrossRefPubMedGoogle Scholar
  48. Jankowska, E., Rastad, J. and Westman, J. (1976). Intracellular application of horseradish peroxidase and its light and electron microscopical appearance in spinocervical tract cells. Brain Res. 105, 557–562.CrossRefPubMedGoogle Scholar
  49. Jankowska, E. and Roberts, W.J. (1972a). An electrophysiological demonstration of the axonal projections of single spinal interneurones in the cat. J. Physiol. 222, 597–622.PubMedCentralCrossRefPubMedGoogle Scholar
  50. Jankowska, E. and Roberts, W.J. (1972b). Synaptic actions of single interneurons mediating reciprocal Ia inhibition of motoneurones. J. Physiol. 222, 623–642.PubMedCentralCrossRefPubMedGoogle Scholar
  51. Jordan, L. (1983). Factors determining motoneuron rhythmicity during fictive locomotion. Symp. Soc. Exp. Biol. 37 423–444.PubMedGoogle Scholar
  52. Kniffki, K.-D., Schomburg, E.D. and Steffens, H. (1981). Effects from fine muscle and cutaneous afferents on spinal locomotion in cats. J. Physiol. 319, 543–554.PubMedCentralCrossRefPubMedGoogle Scholar
  53. Lundoerg, A. (1959). Integrative significance of patterns of connections made by muscle afferents in the spinal cord. Symp. XXI Int. Physiol. Cong. Buenos Aires, pp 1–5.Google Scholar
  54. Lundberg, A. (1969a). Convergence of excitatory and inhibitory action on interneurones in the spinal cord. In The Interneuron. UCLA Forum in Medical Sciences, Number11. (ed. M.A.B. Brazier). Univ. of Calif. Press, Berkeley pp. 231–265.Google Scholar
  55. Lundberg, A. (1969b). Reflex control of stepping. Proc. Norwegian Acad. Sci. Let., Universitetsforlaget, Oslo, pp. 5–42.Google Scholar
  56. Lundberg, A. (1971). Function of the ventral spinocerebellar tract, a new hypothesis. Exp. Brain Res. 12, 317–330.PubMedGoogle Scholar
  57. Lundberg, A. (1975). Control of spinal mechanisms from the brain. In The Nervous System. Vol. 1. The Basic Neurosciences. (ed. R.O. Brady). Raven Press, New York, 1, 253–265.Google Scholar
  58. Lundberg, A. (1975). Control of spinal mechanisms from the brain. In The Nervous System. Vol. 1. The Basic Neurosciences. (ed. R.O. Brady). Raven Press, New York, 1, 253–265.Google Scholar
  59. Lundberg, A. (1981). Half-centres revisited. In Advances in Physiological Sciences, Vol. 1, (eds. J. Szentagothai, M. Palkovits and J. Hamori). Pergamon Press/Akademiai Kiado, Budapest, pp. 155–167.Google Scholar
  60. Luscher, H.-R., Ruenzel, P., Fetz, E. and Henneman, E. (1979). Postsynaptic population potentials recorded from ventral roots perfused with isotonic sucrose: Connections of groups la and II spindle afferent fibers with large populations of motoneurons« J. Neurophysiol. 42, 1146–1164.PubMedGoogle Scholar
  61. McCrea, D.A., Pratt, C.A. and Jordan, L.M. (1980). Renshaw cell activity and recurrent effects on motoneurons during fictive locomotion. J. Neurophysiol. 44, 475–488.PubMedGoogle Scholar
  62. Meyers, D., Fleshman, J.W. and Schmidt, B.J. Retrograde labeling of spinal neurons following injection of HRP into the flexor digitorum longus motor nucleus in the cat. Soc. Neurosci. Abstr. 11 in press.Google Scholar
  63. Miller, S. and Scott, P.D. (1977). The spinal locomotor generator. Exp. Brain Res. 30. 387–403.PubMedGoogle Scholar
  64. Obata, K. (1977). Biochemistry and physiology of amino acid transmitters. In Handbook of Physiology. Sec. 1. The Nervous System. Vol. 1. Cellular Biology of Neurons. Part 1. (ed. R. Kandel). American Physiological Society, Washington, pp. 625–650.Google Scholar
  65. O’Donovan, M.J., Pinter, M. J., Dum, R. P. and Burke, R. E. (1982). The actions of FDL and FHL muscles in intact cats: Functional dissociation between anatomical synergists. J. Neurophysiol. 47, 1126–1143.PubMedGoogle Scholar
  66. O’Donovan, M.J., Pinter, M.J., Dum, R.P. and Burke, R.E. (1985). Kinesiological studies of self- and cross-reinnervated FDL and soleus muscles in freely-moving cats. J. Neurophysiol., in press.Google Scholar
  67. Orlovsky, G.N. (1972). Activity of vestibulospinal neurons during locomotion. Brain Res. 46, 85–98.CrossRefPubMedGoogle Scholar
  68. Orlovsky, G.N. (1972). Activity of rubrospinal neurons during locomotion. Brain Res. 46, 99–112.CrossRefPubMedGoogle Scholar
  69. Orlovsky, G.N. and Feldman, A.G. (1972). Classification of lumbosacral neurons by their discharge pattern during evoked locomotion. Neurophysiol. 4, 311–317 (trans.).CrossRefGoogle Scholar
  70. Perret, C. (1976). Neural control of locomotion in the decorticate cat. In Neural Control of Locomotion. (eds. R.M. Herman, S. Grillner, P. Stein and D.G. Stuart). Plenum Press, New York, pp. 587–616.CrossRefGoogle Scholar
  71. Perret, C. (1983). Centrally generated pattern of motoneuron activity during locomotion in the cat. Symp. Soc. Exp. Biol. 37, 405–422.PubMedGoogle Scholar
  72. Perret, C. and Cabelguen, J.-M. (1980). Main characteristics of the hindlimb locomotor cycle in the decorticate cat with special reference to bifunctional muscles. Brain Res. 187, 333–352.CrossRefPubMedGoogle Scholar
  73. Pinter, M.J., Burke, R.E., O’Donovan, M.J. and Dum, R.P. (1982). Supraspinal facilitation of cutaneous polysynaptic EPSPs in cat medial gastrocnemius motoneurons. Exp. Brain Res. 45, 133–143.PubMedGoogle Scholar
  74. Rosenberg, M.E. (1970). Synaptic connections of alpha extensor motoneurones with ipsilateral and contralateral cutaneous nerves. J. Physiol. 207, 231–255.PubMedCentralCrossRefPubMedGoogle Scholar
  75. Ryall, R.W. (1970). Renshaw cell mediated inhibition of Renshaw cells; Patterns of excitation and inhibition from impulses in motor axon collaterals. J. Neurophysiol. 33, 257–270.PubMedGoogle Scholar
  76. Schomburg, E.D. and Behrends, H.B. (1978a). Phasic control of the transmission in the excitatory and inhibitory reflex pathways from cutaneous afferents to α-motoneurones during fictive locomotion in cats. Neurosci. Lett. 8, 277–282.CrossRefPubMedGoogle Scholar
  77. Schomburg, E.D. and Behrends, H.B. (1978b). The possibility of phase dependent monosynaptic and polysynaptic Ia excitation to homonymous motoneurones during fictive locomotion. Brain Res. 143, 533–537.CrossRefPubMedGoogle Scholar
  78. Schomburg, E.D., Behrends, H.-B. and Steffens, H. (1981). Changes in segmental and propriospinal reflex pathways during spinal locomotion. In Muscle Receptors and Movement. (eds. A. Taylor and A. Prochazka). MacMillan, London, pp. 413–425.CrossRefGoogle Scholar
  79. Severin, F.V., Orlovsky, G.N. and Shik, M.L. (1967). Work of muscle receptors during controlled locomotion. Biophys. 12, 575–586 (trans.).Google Scholar
  80. Shik, M.L. and Orlovsky, G.N. (1976). Neurophysiology of locomotor automatism. Physiol. Rev. 56, 465–501.PubMedGoogle Scholar
  81. Shik, M.L., Severin, F.V. and Orlovsky, G.N. (1966). Control of walking and running by means of electrical stimulation of the mid-brain. Biophys. 11, 756–765 (trans.).Google Scholar
  82. Snow, P.J., Rose, P.K. and Brown, A.G. (1976). Tracing axons and axon collaterals of spinal neurons using intracellular injection of horseradish peroxidase. Science 191, 312–313.CrossRefPubMedGoogle Scholar
  83. Stein, P.S.G. (1984). Central pattern generators in the spinal cord. In Handbook of the Spinal Cord, (ed. R.A. Davidoff). Marcel Dekker, New York, pp. 647–672.Google Scholar
  84. Willis, W.D., Weir, M.A., Skinner, R.D. and Bryan, R.N. (1973). Differential distribution of spinal cord field potentials. Exp. Brain Res. 17, 169–176.CrossRefPubMedGoogle Scholar

Copyright information

© The Wenner-Gren Center 1986

Authors and Affiliations

  • Robert E. Burke
  • J. W. Fleshman

There are no affiliations available

Personalised recommendations