Skip to main content

Hindlimb Locomotion of the Spinal Cat: Synergistic Patterns, Limb Dynamics and Novel Blends

  • Chapter
Neurobiology of Vertebrate Locomotion

Part of the book series: Wenner-Gren Center International Symposium Series ((WGS))

Abstract

Lumbosacral segments of the cat spinal cord contain neuronal networks, or central pattern generators (CPGs), capable of providing the rhythmical output and basic synergistic patterns required for hindlimb locomotion (Grillner & Zangger, 1979). In the decade since Grillner (1973) first summarized work on locomotion in the spinal cat, the capacity of lumbosacral networks to regulate intralimb and interlimb coordination of the cat’s hindlimbs without benefit of supraspinal influences (Forssberg et al., 1980a-b; Rossignol et al., 1982; Smith et al., 1982) and/or movement-related feedback (Grillner & Zangger, 1979 & 1985; Perret & Cabelquen, 1980) has been studied extensively. Because much of this work has been reviewed recently (Grillner, 1981; Grillner & Wallen, 1985), the focus here will be on current information and issues that remain unsettled with regard to hindlimb locomotion in spinal cats (adult animals lesioned at T-12, tested 5–6 mo later) as opposed to spinal kittens (lesioned at 7–14 days of age, tested 3–6 mo later).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson, O. and Grillner, S. (1981). Peripheral control of the cat’s step cycle. I. Phase dependent effects of ramp-movements of the hip during “fictive locomotion.” Acta Physiol. Scand., 113, 89–101.

    Article  CAS  PubMed  Google Scholar 

  • Baker, L.L., Chandler, S.H. and Goldberg, L.J. (1984). L-Dopa induced locomotor-like activity observed in ankle flexor and extensor muscle nerves of chronic and acute spinal cats. Exp. Neurol., 86. 515–526.

    Article  CAS  PubMed  Google Scholar 

  • Bradley, N.S. and Smith, J.L. (1985). Development of hindlimb stepping behaviors: neuromuscular patterns in normal and spinal neonatal kittens. Soc. Neurosci. Abstr., 11. 1286.

    Google Scholar 

  • Brown, T. Graham (1911). The intrinsic facts in the act of progression in the mammal. Proc. Roy. Soc. B., 84, 308–319.

    Article  Google Scholar 

  • Carter, M.C. and Smith, J.L. (1985a). Simultaneous control of two rhythmical behaviors. I. Locomotion with the paw-shake response in normal cat. J. Neurophysiol., (in press).

    Google Scholar 

  • Carter, M.C. and Smith, J.L. (1985b). Simultaneous control of two rhythmical behaviors. II. Hindlimb walking with the paw-shake response in spinal cat. J. Neurophysiol., (in press).

    Google Scholar 

  • Chandler, S.H., Baker, S.H. and Goldberg, L.J. (1984). Characterization of synaptic potentials in hindlimb extensor motoneurons during L-DOPA-induced fictive locomotion in acute and chronic spinal cats. Brain Res. 303, 91–100.

    Article  CAS  PubMed  Google Scholar 

  • Duysens, J. and Pearson, K.G. (1980). Inhibition of flexor burst generated by loading ankle extensor muscles in walking cat. Brain Res.. 187. 321–332.

    Article  CAS  PubMed  Google Scholar 

  • Engberg, I. (1964). Reflexes to foot muscles in the cat. Acta Physiol. Scand. Suppl., 221, 1–63.

    Google Scholar 

  • Engberg, I. and Lundberg, A. (1969). An electromyographic analysis of muscular activity in the hindlimb of the cat during unrestrained locomotion. Acta Physiol. Scand., 75, 614–630.

    Article  CAS  PubMed  Google Scholar 

  • English, A.W. (1985). Limbs vs. Jaws: Can they be compared? Amer. Zool., 25, 351–363.

    Article  Google Scholar 

  • Fleshman, J.W., Lev-Tov, A. and Burke, R.E. (1984). Peripheral and central control of flexor digitorum longus and flexor hallucis longus motoneurons: the synaptic basis of functional diversity. Exp. Brain Res., 54, 133–149.

    Article  CAS  PubMed  Google Scholar 

  • Forssberg, H., Grillner, S. and Halbertsma, J. (1980a). The locomotion of the low spinal cat. 1: Coordination within a hindlimb. Acta Physiol. Scand., 108. 269–281.

    Article  CAS  PubMed  Google Scholar 

  • Forssberg, H., Grillner, S. and Rossignol, S. (1980b). The locomotion of the low spinal cat 2: Interlimb coordination. Acta Physiol. Scand., 108. 283–295.

    Article  CAS  PubMed  Google Scholar 

  • Giuliani, C.A. and Smith, J.L. (1985a). Development and characteristics of airstepping in chronic spinal cats. J. Neurosci., 5, 1276–1282.

    CAS  PubMed  Google Scholar 

  • Giuliani, C.A and Smith, J.L. (1985b). Effects of deafferentation on walking behaviors in chronic spinal cat. J. Neurosci., (submitted)

    Google Scholar 

  • Giuliani, C.A., Carter, M.C. and Smith, J.L. (1984). Return of weight-supported locomotion in the adult spinal cat. Soc. Neurosci. Abstr., 10, 632.

    Google Scholar 

  • Grillner, S. (1973). Locomotion in the spinal cat. In Control of Posture and Locomotion. (eds. R.B. Stein, K.B. Pearson, R.S. Smith, and J.B. Redford). Plenum Press, New York.

    Google Scholar 

  • Grillner, S. (1981). Control of locomotion in bipeds, tetrapods and fish. In Handbook of Physiology, Section 1: The Nervous System, Vol. II. Motor Control (ed. V.B. Brooks). Williams and Wilkins Press, Baltimore.

    Google Scholar 

  • Carter, M.C. and Smith, J.L. (1985b). Simultaneous control of two rhythmical behaviors. II. Hindlimb walking with the paw-shake response in spinal cat. J. Neurophysiol., (in press).

    Google Scholar 

  • Chandler, S.H., Baker, S.H. and Goldberg, L.J. (1984). Characterization of synaptic potentials in hindlimb extensor motoneurons during L-DOPA-induced fictive locomotion in acute and chronic spinal cats. Brain Res. 303, 91–100.

    Article  CAS  PubMed  Google Scholar 

  • Duysens, J. and Pearson, K.G. (1980). Inhibition of flexor burst generated by loading ankle extensor muscles in walking cat. Brain Res.. 187. 321–332.

    Article  CAS  PubMed  Google Scholar 

  • Engberg, I. (1964). Reflexes to foot muscles in the cat. Acta Physiol. Scand. Suppl., 221, 1–63.

    Google Scholar 

  • Engberg, I. and Lundberg, A. (1969). An electromyographic analysis of muscular activity in the hindlimb of the cat during unrestrained locomotion. Acta Physiol. Scand., 75, 614–630.

    Article  CAS  PubMed  Google Scholar 

  • English, A.W. (1985). Limbs vs. Jaws: Can they be compared? Amer. Zool., 25, 351–363.

    Article  Google Scholar 

  • Fleshman, J.W., Lev-Tov, A. and Burke, R.E. (1984). Peripheral and central control of flexor digitorum longus and flexor hallucis longus motoneurons: the synaptic basis of functional diversity. Exp. Brain Res., 54, 133–149.

    Article  CAS  PubMed  Google Scholar 

  • Forssberg, H., Grillner, S. and Halbertsma, J. (1980a). The locomotion of the low spinal cat. 1: Coordination within a hindlimb. Acta Physiol. Scand., 108. 269–281.

    Article  CAS  PubMed  Google Scholar 

  • Forssberg, H., Grillner, S. and Rossignol, S. (1980b). The locomotion of the low spinal cat 2: Interlimb coordination. Acta Physiol. Scand., 108. 283–295.

    Article  CAS  PubMed  Google Scholar 

  • Giuliani, C.A. and Smith, J.L. (1985a). Development and characteristics of airstepping in chronic spinal cats. J. Neurosci., 5, 1276–1282.

    CAS  PubMed  Google Scholar 

  • Giuliani, C.A and Smith, J.L. (1985b). Effects of deafferentation on walking behaviors in chronic spinal cat. J. Neurosci., (submitted)

    Google Scholar 

  • Giuliani, C.A., Carter, M.C. and Smith, J.L. (1984). Return of weight-supported locomotion in the adult spinal cat. Soc. Neurosci. Abstr., 10, 632.

    Google Scholar 

  • Grillner, S. (1973). Locomotion in the spinal cat. In Control of Posture and Locomotion. (eds. R.B. Stein, K.B. Pearson, R.S. Smith, and J.B. Redford). Plenum Press, New York.

    Google Scholar 

  • Grillner, S. (1981). Control of locomotion in bipeds, tetrapods and fish. In Handbook of Physiology, Section 1: The Nervous System, Vol. II. Motor Control (ed. V.B. Brooks). Williams and Wilkins Press, Baltimore.

    Google Scholar 

  • Grillner, S. and Rossignol, S. (1978). On the initiation of the swing phase of locomotion in chronic spinal cats. Brain Res., 146, 269–277.

    Article  CAS  PubMed  Google Scholar 

  • Grillner, S. and Zangger, P. (1979). On the central generation of locomotion in the spinal cat. Exp. Brain Res., 34. 241–161.

    Article  CAS  PubMed  Google Scholar 

  • Grillner, S. and Zangger, P. (1984). The effect of dorsal root transection on the efferent motor pattern in the cat’s hindlimb during locomotion. Acta Physiol. Scand., 120, 393–405.

    Article  CAS  PubMed  Google Scholar 

  • Grillner, S. and Wallen, P. (1985). Central pattern generators for locomotion, with special reference to vertebrates. Ann. Rev. Neurosci., 8, 233–261.

    Article  CAS  PubMed  Google Scholar 

  • Halbertsma, J.M. (1983). The stride cycle of the cat: the modeling of locomotion by computerized analysis of automatic recordings. Acta Physiol. Scand. Suppl., 52, 1–71.

    Google Scholar 

  • Hoy, M.G. and Zernicke, R.F. (1985). Modulation of limb dynamics in the swing phase of locomotion. J. Biomech., 18, 49–60.

    Article  CAS  PubMed  Google Scholar 

  • Jordan, L.M. (1983). Factors determining motoneuron rhythmicity during fictive locomotion. In Neuronal Origin of Rhythmic Movements, (eds. A. Roberts & B.L. Roberts). Cambridge University Press, Cambridge.

    Google Scholar 

  • Kulagin, A.S. and Shik, ML. (1970). Interaction of symmetrical limbs during controlled locomotion. Biofizika. 15, 171–178.

    Google Scholar 

  • Loeb, G.E. (1984). The control and responses of mammalian muscle spindle during normally executed motor tasks. Exerc. Sports Sci. Rev., 12, 157–204.

    Article  CAS  Google Scholar 

  • Lovely, R., Gregor, R.J., Roy, R.R., and Edgerton, V.R. (1985). Training effects on the recovery of full weight-bearing stepping in adult spinal cats. Soc. Neurosci. Abstr., 11, 1101.

    Google Scholar 

  • Lundberg, A. (1981). Half-centres revisited. In Regulatory Functions ofthe CNS, Motion and Organization Principles, (eds. J. Szentagothai, M. Palkovits, and J. Hamori). Pergamon Press/Academiai Kiado, Budapest

    Google Scholar 

  • O’Donovan, M.J., Pinter, M.J., Dum, R.P. and Burke, R.E. (1982). Actions of FDL and FHL muscles in intact cats: functional dissociation between anatomical synergists. J. Neurophysiol., 47. 1126–1143.

    PubMed  Google Scholar 

  • Perret, C. and Cabelguen, J.-M. (1980). Main characteristics of the hindlimb locomotor cycle in the decorticate cat with special reference to bifunctional muscles. Brain Res., 187, 333–352.

    Article  CAS  PubMed  Google Scholar 

  • Perret, C. (1983). Centrally generated pattern of motoneuron activity during locomotion in the cat. In Neuronal Origin of Rhythmic Movements, (eds. A. Roberts & B.L. Roberts). Cambridge University Press, Cambridge.

    Google Scholar 

  • Powers, R.K. and Binder, M.D. (1985). Distribution of oligosynaptic group I input to the cat medial gastrocnemius motoneuron pool. J. Neurophysiol., 53.497–517.

    CAS  PubMed  Google Scholar 

  • Rossignol, S., Barbeau, H. and Provencher, J. (1982). Locomotion in the adult spinal cat. Soc. Neurosci. Abstr., 8, 163.

    Google Scholar 

  • Sabin, C. and Smith, J.L. (1984). Recovery and perturbation of paw-shake responses in spinal cats. J. Neurophysiol., 51 680–688.

    CAS  PubMed  Google Scholar 

  • Shefchyk, S.J., Stein, R.B. and Jordan, L.M. (1984). Synaptic transmission from muscle afferents during fictive locomotion in the mesencephalic cat. J. Neurophysiol., 51, 986–997.

    CAS  PubMed  Google Scholar 

  • Smith, J.L., Edgerton, V.R., Betts, B. and Collates, T. (1977). EMG of slow and fast ankle extensors of cat during posture, locomotion, and jumping. J. Neurophysiol., 40, 503–513.

    CAS  PubMed  Google Scholar 

  • Smith, J.L., Smith, L.A., Zernicke, R.F. and Hoy, M.G. (1982). Locomotion in exercised and nonexercised cats cordotomized at two or twelve weeks of age. Exp. Neurol., 76, 393–413.

    Article  CAS  PubMed  Google Scholar 

  • Smith, J.L., Hoy, M.G., Koshland, G.F., Phillips, D.M. and Zernicke, R.F. (1985a). Intralimb coordination of the paw-shake response: a mixed novel synergy. J. Neurophysiol., 54, 1271–1281.

    CAS  PubMed  Google Scholar 

  • Smith, J.L., Bradley, N.S., Carter, M.C., Giuliani, CA., Hoy, M.G., Koshland, G.F. and Zernicke, R.F. (1985b). Rhythmical movements of the hindlimbs in spinal cats: consideration for a controlling network. In Development and Plasticity of the Mammalian Spinal Cord. (eds. A. Gorio, M. Goldberger, and M. Murray), Liviana Press, Padova.

    Google Scholar 

  • Walmsley, B., Hodgson, J.A. and Burke, R.E. (1978). Forces produced by medial gastrocnemius and soleus muscles during locomotion in freely moving cats. J. Neurophysiol., 41, 1203–1216.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1986 The Wenner-Gren Center

About this chapter

Cite this chapter

Smith, J.L. (1986). Hindlimb Locomotion of the Spinal Cat: Synergistic Patterns, Limb Dynamics and Novel Blends. In: Grillner, S., Stein, P.S.G., Stuart, D.G., Forssberg, H., Herman, R.M. (eds) Neurobiology of Vertebrate Locomotion. Wenner-Gren Center International Symposium Series. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-09148-5_13

Download citation

Publish with us

Policies and ethics