Skip to main content

Serotonin/Norepinephrine Receptor Interactions: Sensitivity Changes after Antidepressants and Lesions

  • Chapter
Receptor-Receptor Interactions

Abstract

The morphological organization of monoamine systems in brain and psychopharmacological studies have long suggested a functional linkage between noradrenergic and serotonergic neuronal systems. Recent studies of the molecular mechanism of action of antidepressants have added additional support for an aminergic interaction in the central nervous system (CNS). In the present manuscript, we will review this evidence and evaluate the possible molecular basis for the adrenergic/serotonergic link.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J.L. (1983). Serotonin receptor changes after chronic antidepressant treatments: Ligand binding, electrophysiological and behavioral studies. Life Sci. 32, 1791–1801.

    Article  PubMed  CAS  Google Scholar 

  • Batty, I.R., Nahorski, S.R. and Irvine, R.F. (1985). Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices. Biochem. J. 232, 211–215.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Berridge, M.J. (1985). The molecular basis of communication within cells. Scientific Amer. 253, 142–152.

    Article  CAS  Google Scholar 

  • Brunello, N., Volterra, A., Cagiano, R., Ianieri, G.C., Cuomo, V. and Racagni, G. (1985). Biochemical and behavioral changes in rats after prolonged treatment with desipramine: interaction with p-chlorophenylalanine. Naunyn-Schmiedeberg’s Arch. Pharmacol. 331, 20–22.

    Article  CAS  Google Scholar 

  • Conn, P.J. and Sanders-Bush, E. (1984). Selective 5HT-2 antagonists inhibit serotonin stimulated phosphatidylinositol metabolism in cerebral cortex. Neuropharmacology 23, 993–996.

    Article  PubMed  CAS  Google Scholar 

  • Conn, P.J. and Sanders-Bush, E. (1985). Serotonin-stimulated phosphoinositide turnover: mediation by the S2 binding site in rat cerebral cortex but not in subcortical regions. J. Pharmacol. Exp. Ther. 234, 195– 203.

    Google Scholar 

  • Conn, P.J. and Sanders-Bush, E. (1986a). Regulation of serotonin-stimulated phosphoinositide hydrolysis: Relation to the serotonin 5HT-2 binding site. J. Neurosci. in press.

    Google Scholar 

  • Conn, P.J. and Sanders-Bush, E. (1986b). Agonist-induced phosphoinositide hydrolysis in choroid plexus. J. Neurochem. in press.

    Google Scholar 

  • Conn, P.J., Sanders-Bush, E., Hoffman, B.J. and Hartig, P.R. (1986a). A unique serotonin receptor in choroid plexus is linked to phosphoinositide hydrolysis. Proc. Nat. Acad. Sci. USA 83, 4086–4088.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Conn, P.J., Janowsky, A. and Sanders-Bush, E. (1986b). Denervation supersensitivity of 5-HT-lc receptors in rat choroid plexus. Brain Res. in press.

    Google Scholar 

  • de Chaffoy de Courcelles, D., Leysen, J.E., De Clerck, F., Van Belle, H. and Janssen, P.A.J. (1985). Evidence that phospholipid turnover is the signal transducing system coupled to serotonin-S2 receptor sites. J. Biol. Chem. 260, 7603–7608.

    PubMed  Google Scholar 

  • Dixon, J.F. and Hokin, L.E. (1985). The formation of inositol-1,2-cyclic phosphate on agonist stimulation of phosphoinositide breakdown in mouse pancreatic minilobules. J. Biol. Chem. 260, 16068–16071.

    PubMed  CAS  Google Scholar 

  • Irvine, R.F., Letcher, A.J., Lander, D.J. and Downes, C.P. (1984), Inositol trisphosphates in carbachol-stimulated rat parotid glands. Biochem. J. 223, 237–243.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Janowsky, A., Labarca, R. and Paul, S.M. (1984). Characterization of neurotransmitter receptor-mediated phosphatidylinositol hydrolysis in the rat hippocampus. Life Sci. 35, 1953–1961.

    Article  PubMed  CAS  Google Scholar 

  • Janowsky, A.J., Steranka, L.R., Gillespie, D.D. and Sulser, F. (1982). Role of neuronal signal input in the down-regulation of central noradrenergic receptor function by antidepressant drugs. J. Neurochem. 39, 290–292.

    Article  PubMed  CAS  Google Scholar 

  • Kendall, D.A. and Nahorski, S.R. (1985). 5-hydroxytryptamine-stimulated inositol phospholipid hydrolysis in rat cerebral cortex slices: Pharmacological characterization and effects of antidepressants. J. Pharmacol. Exp. Therap. 233, 473–479.

    CAS  Google Scholar 

  • Kent, R.S., DeLean, A. and Lefkowitz, R.J. (1980). A quantitative analysis of beta-adrenergic receptor interactions: resolution of high and low affinity states of the receptor by ligand binding data. Mol. Pharmacol. 17, 14–23.

    PubMed  CAS  Google Scholar 

  • Manier, D.H., Gillespie, D.D., Steranka, L.R. and Sulser, F. (1984). A pivotal role for serotonin in the down-regulation of beta-adrenoceptors by antidepressants: Reversibility of the action of p-chlorophenylalanine by 5-hydroxytryptophan. Experientia 40, 1223–1226.

    Article  PubMed  CAS  Google Scholar 

  • Manier, D.H., Gillespie, D.D., Sanders-Bush, E. and Sulser, F. (1986). The serotonin/noradrenaline-link in brain: I. The role of noradrenaline and serotonin in the regulation of density and function of beta adrenoceptors and its alteration by desipramine. Naunyn-Schmiedeberg’s Arch. Pharmacol. submitted.

    Google Scholar 

  • Moskowitz, M.A., Liebman, J.F., Reinhard, Jr., J.F. and Schlosberg, A. (1979). Raphe origin of serotonin-containing neurons within choroid plexus of the rat. Brain Res. 169, 590–594.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, S. and Mariyasu, N. (1978). Nerve fibers and nerve endings in the choroid plexus: electron microscopic study. Brain and Nerve 30, 259–266.

    PubMed  CAS  Google Scholar 

  • Napoleone, P., Sancesario, B. and Amenta, F. (1982). Indoleaminergic innervation of rat choroid plexus: a fluorescence histochemical study. Neurosci. Lett. 34, 143–147.

    Article  PubMed  CAS  Google Scholar 

  • Nathanson, J.A. (1979). Beta-adrenergic-sensitive adenylate cyclase in secretory cells of choroid plexus. Science 204, 843–844.

    Article  PubMed  CAS  Google Scholar 

  • Nimgaonkar, V.L., Goodwin, G.M., Davies, C.L. and Green, A.R. (1985). Down-regulation of beta-adrenoceptors in rat cortex by repeated administration of desipramine electronconvulsine shock and clenbuterol requires 5HT neurons but not 5HT. Neuropharmacology 24, 279–283.

    Article  PubMed  CAS  Google Scholar 

  • Hirasawa, K. and Nishizuka, Y. (1985). Phosphatidylinositol turnover in receptor mechanism and signal transduction. Ann. Rev. Pharmacol. Toxicol. 25, 147–170.

    Article  CAS  Google Scholar 

  • Pazos, A., Hayer, D. and Palacios, J.M. (1984). The binding of serotonergic ligands to the porcine choroid plexus: Characterization of a new type of serotonin recognition site. Europ. J. Pharmacol. 106, 539–546.

    Article  CAS  Google Scholar 

  • Roth, B.L., Nakaki, T., Chuang, D. and Costa, E. (1986). 5-Hydroxytryptamine-2 receptors coupled to phospholipase C in rat aorta: Modulation of phosphoinositide turnover by phorbol ester. J. Pharmacol. Exp. Ther. 238, 480.

    PubMed  CAS  Google Scholar 

  • Sanders-Bush, E. and Conn, P.J. Neurochemistry of serotonin neuronal systems: Consequences of serotonin receptor activation. In Psychopharmacology, The Third Generation of Progress, in press, 1986.

    Google Scholar 

  • Sibley, D.R., Nambi, P., Peters, J.R. and Lefkowitz, R.J. (1984). Phorbol diesters promote beta-adrenergic receptor phosphorylation and adenylate cyclase densitization in duck erythrocytes. Biochem. Biophys. Res. Comm. 121, 973–979.

    Article  PubMed  CAS  Google Scholar 

  • Stockmeier, C.A., Martino, A., and Kellar, K.J. (1985). A strong influence of serotonin axons on beta-adrenergic receptors in rat brain. Science 230, 323–325.

    Article  PubMed  CAS  Google Scholar 

  • Sulser, F., Janowsky, A.J., Okada, F., Manier, D.H. and Mobley, P.L. (1983). Regulation of recognition and action function of the norepinephrine receptor-coupled adenylate cyclase system in brain: Implications for the therapy of depression. Neuropharmacology 22, 425–431.

    Article  PubMed  CAS  Google Scholar 

  • Sulser, F. (1985). The serotonin-noradrenaline link hypothesis of affective disorders. In Psychiatry, Vol. 2, (eds. P. Pichot, P. Berner, R. Wolf, and K. Thau). Plenum Publishing Corp., New York, N.Y., 411–416.

    Google Scholar 

  • Wilson, D.B., Connolly, T.M., Bross, T.E., Majerus, P.W., Serman, W.R., Tyler, A.N., Rubin, L.J. and Brown, J.E. (1985). Isolation and characterization of the inositol cyclic phosphate products of polyphosphoinositide cleavage by phospholipase C: physiological effects in limulus photoreceptors. J. Biol. Chem. 260, 13496–13501.

    PubMed  CAS  Google Scholar 

  • Yagaloff, K.A. and Hartig, P.R. (1985). 125I-Lysergic acid diethylamide binds to a novel sertonergic site on rat choroid plexus epithelial cells. J. Neurosci. 5, 3178–3183.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1987 The Wenner-Gren Center

About this chapter

Cite this chapter

Sanders-Bush, E., Sulser, F. (1987). Serotonin/Norepinephrine Receptor Interactions: Sensitivity Changes after Antidepressants and Lesions. In: Fuxe, K., Agnati, L.F. (eds) Receptor-Receptor Interactions. Wenner-Gren Center International Symposium Series. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-08949-9_31

Download citation

Publish with us

Policies and ethics