Skip to main content

Drugs as Suicide Substrates of Cytochrome P-450

  • Chapter
Selectivity and Molecular Mechanisms of Toxicity

Abstract

Interest in the toxicological significance of drug metabolism has increased enormously in the last 30 years, stimulated by the growing awareness that many potentially toxic chemicals are present in our environment; and also by the appreciation that drug-metabolising reactions are not only important in detoxifying chemicals, but in many cases can actually initiate toxic responses, by converting inert drugs into biologically reactive derivatives. The enzymes that have attracted most attention in this respect are the haemoproteins of the cytochrome P-450 group which are present in the endoplasmic reticulum of the hepatocyte and of other cell types and also in the membranes of certain other organelles. Extensive work carried out in many laboratories has established that this group of cytochromes is in fact a complex family of related but not identical haemoproteins. All members of this family contain, as the active prosthetic group, protohaem (the iron complex of protoporphyrin IX) bound to the apoprotein moiety through a thiolate anion (S) linkage from a cysteine residue, and all show the property of binding a lipid-like substrate in close proximity to the prosthetic group where the other reactant, molecular oxygen, can also bind in order to be activated (White and Coon, 1980). Oxygen activation is achieved by a stepwise addition of electrons (two per catalytic cycle) and these are donated by the satellite components of the electron transport system of the membrane (the flavoproteins and cytochrome b5) and are presumably channelled through the apoprotein and the sulphur ligand on to the iron of the haem prosthetic group (figure 8.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbritti, G. and De Matteis, F. (1973). Effect of 3,5-diethoxycarbonyl-l,4-dihydro-collidine on degradation of liver haem. Enzyme, 16, 196–202

    PubMed  CAS  Google Scholar 

  • Adams, H. R., Isaacson, E. I. and Masters, B. S. S. (1977). Inhibition of hepatic microsomal enzymes by chloramphenicol. J. Pharmacol, exptl Ther., 203, 388–96

    CAS  Google Scholar 

  • Augusto, O., Beilan, H. S. and Ortiz de Montellano, P. R. (1982). The catalytic mechanism of cytochrome P-450: spin-trapping evidence for one-electron substrate oxidation. J. Biol. Chem., 257, 11288–95

    PubMed  CAS  Google Scholar 

  • Bernhardt, R., Makower, A., Jänig, G-R. and Ruckpaul, K. (1984). Selective chemical modification of a functionally linked lysine in cytochrome P-450 LM2. Bio-chim. Biophys. Acta, 785, 186–90

    Google Scholar 

  • Bond, E. J. and De Matteis, F. (1969). Biochemical changes in rat liver after administration of carbon disulphide, with particular reference to microsomal changes. Biochem. Pharmacol., 18, 2531–49

    Article  PubMed  CAS  Google Scholar 

  • Catignani, G. L. and Neal, R. A. (1975). Evidence for the formation of a protein bound hydrodisulfide resulting from the microsomal mixed function oxidase catalyzed desulfuration of carbon disulfide. Biochem. Biophys., Res. Commun., 65, 629–36

    Article  CAS  Google Scholar 

  • Cole, S. P. C. and Marks, G. S. (1984). Ferrochelatase and N-alkylated porphyrins. Molec. Cell. Biochem., 64, 127–37

    Article  PubMed  CAS  Google Scholar 

  • Cole, S. P. C, Whitney, R. A. and Marks, G. S. (1981). Ferrochelatase-inhibitory and porphyrin-inducing properties of 3,5-diethoxycarbonyl-l,4-dihydro-2,4,6-trimethylpyridine and its analogues in chick embryo liver cells. Molec. Pharmacol., 20, 395–403

    CAS  Google Scholar 

  • Correia, M. A., Farrell, G. C, Schmid, R., Ortiz de Montellano, P. R., Yost, G. S. and Mico, B. A. (1979). Incorporation of exogenous heme into hepatic cytochrome P-450 in vivo. J. Biol. Chem., 254, 15–17

    Google Scholar 

  • Dalvi, R. R., Poore, R. E. and Neal, R. A. (1974). Studies on the metabolism of carbon disulfide by rat liver microsomes. Life Sci., 14, 1785–96

    Article  PubMed  CAS  Google Scholar 

  • DeGroot, H. and Haas, W. (1981). Self-catalysed, O2-independent inactivation of NADPH or dithionite-reduced microsomal cytochrome P-450 by carbon tetra-chloride. Biochem. Pharmacol., 30, 2343–7

    Article  CAS  Google Scholar 

  • De Matteis, F. (1971). Loss of haem in rat liver caused by the porphyrogenic agent 2-allyl-2-isopropylacetamide. Biochem. J., 124, 767–77

    Article  PubMed  PubMed Central  Google Scholar 

  • De Matteis, F. (1974). Covalent binding of sulfur to microsomes and loss of cyto-chrome P-450 during the oxidative desulfuration of several chemicals. Molec. Pharmacol., 10, 849–54

    Google Scholar 

  • De Matteis, F. (1978). Hepatic porphyrias caused by 2-allyl-2-isopropylacet-amide, 3,5-diethoxycarbonyl-1,4-dihydrocollidine, Griseofulvin and related compounds. Handbook exptl Pharmacol., 44, 129–55

    Google Scholar 

  • De Matteis, F. and Cantoni, L. (1979). Alteration of the porphyrin nucleus of cytochrome P-450 caused in the liver by treatment with allyl-containing drugs. Is the modified porphyrin TV-substituted? Biochem. J., 183, 99–103

    Google Scholar 

  • De Matteis, F. and Gibbs, A. H. (1980). Drug-induced conversion of liver haem into modified porphyrins. Evidence for two classes of products. Biochem. J., 187, 285–8

    Article  PubMed  PubMed Central  Google Scholar 

  • De Matteis, F. and Seawright, A. A. S. (1973). Oxidative metabolism of carbon disulphide by the rat. Effect of treatments which modify the liver toxicity of carbon disulphide. Chem. Biol. Interact., 7, 375–88

    Article  PubMed  Google Scholar 

  • De Matteis, F., Gibbs, A. H., Cantoni, L. and Francis, J. (1980a). Substrate-dependent irreversible inactivation of cytochrome P-450: conversion of its haem moiety into modified porphyrins. In: Ciba Foundation 76 (New Series), Amsterdam, Excerpta Medica, pp. 119–31

    Google Scholar 

  • De Matteis, F., Gibbs, A. H., Jackson, A. H. and Weerasinghe, S. (1980b). Conversion of liver haem into N-substituted porphyrins or green pigments. Nature of the substituent at the pyrrole nitrogen atom. FEBS Lett., 119, 109–12

    Article  PubMed  Google Scholar 

  • De Matteis, F., Gibbs, A. H. and Smith, A. G. (1980c). Inhibition of protohaem ferro-lyase by N-substituted porphyrins. Structural requirements for the inhibitory effect. Biochem. J., 189, 645–8

    Google Scholar 

  • De Matteis, F., Gibbs, A. H. and Tephly, T. R. (1980d). Inhibition of protohaem ferro-lyase in experimental porphyria. Isolation and partial characterization of a modified porphyrin inhibitor. Biochem. J., 188, 145–52

    Article  PubMed  PubMed Central  Google Scholar 

  • De Matteis, F., Gibbs, A. H., Farmer, P. B. and Lamb, J. H. (1981). Liver production of N-alkylated porphyrins caused in mice by treatment with substituted dihydropyridines. Evidence that the alkyl group on the pyrrole nitrogen atom originates from the drug. FEBS Lett., 129, 328–31

    Article  PubMed  Google Scholar 

  • De Matteis, F., Gibbs, A. H. and Unseld, A. P. (1982a). Conversion of liver haem into N-substituted porphyrins or green pigments. Evidence for two distinct classes of products. In: Biological Reactive Intermediates 2 (ed. R. Snyder), New York, Plenum Press, pp. 1319–34

    Google Scholar 

  • De Matteis, F., Holland, C, Gibbs, A. H., De Sa, N. and Rizzardini, M. (1982b). Inactivation of cytochrome P-450 and production of N-alkylated porphyrins caused in isolated hepatocytes by substituted dihydropyridines. Structural requirements for loss of haem and alkylation of the pyrrole nitrogen atom. FEBS Lett., 145, 87–92

    Article  PubMed  Google Scholar 

  • De Matteis, F., Jackson, A. H., Gibbs, A. H., Rao, K. R. N., Atton, J., Weerasinghe, S. and Hollands, C. (1982c). Structural isomerism and chirality of N-monosub-stituted protoporphyrins. FEBS Lett., 142, 44–8

    Google Scholar 

  • De Matteis, F., Gibbs, A. H. and Hollands, C. (1983). N-Alkylation of the haem moiety of cytochrome P-450 caused by substituted dihydropyridines. Preferential attack of different pyrrole nitrogen atoms after induction of various cytochrome P-450 isoenzymes. Biochem. J., 211, 455–61

    Article  PubMed  PubMed Central  Google Scholar 

  • Elcombe, C. R., Bridges, J. W., Gray, T. J. B., Nimmo-Smith, R. H. and Netter, K. J. (1975). Studies on the interaction of safrole with rat hepatic microsomes. Biochem. Pharmacol., 24, 1427–33

    Article  CAS  Google Scholar 

  • Fermi, G. and Perutz, M. (1981). Atlas of Molecular Structures in Biology, Vol. 2, Hemoglobin and Myoglobin, Oxford University Press, New York

    Google Scholar 

  • Freundt, K. J. and Dreher, W. (1969). Inhibition of drug metabolism by small concentrations of carbon disulphide. Naunym-Schmiedebergs Arch. Pharmakol. exp. Path., 263, 208–9

    Article  CAS  Google Scholar 

  • Gan, L-S. L., Acebo, A. L. and Alworth, W. L. (1984). 1-ethynylpyrene, a suicide inhibitor of cytochrome P-450 dependent benz[a]pyrene hydroxylase activity in liver microsomes. Biochemistry, 23, 3827–36

    Article  PubMed  CAS  Google Scholar 

  • Halpert, J. (1981). Covalent modification of lysine during the suicide inactivation of rat liver cytochrome P-450 by chloramphenicol. Biochem. Pharmacol., 30, 875–81

    Article  PubMed  CAS  Google Scholar 

  • Halpert, J. (1982). Further studies of the suicide inactivation of purified rat liver cytochrome P-450 by chloramphenicol. Molec. Pharmacol., 21, 166–72

    CAS  Google Scholar 

  • Halpert, J. R. and Neal, R. A. (1980). Inactivation of purified rat liver cytochrome P-450 by chloramphenicol. Molec. Pharmacol, 17, 427–31

    CAS  Google Scholar 

  • Halpert, J., Hammond, D. and Neal, R. A. (1980). Inactivation of purified rat liver cytochrome P-450 during metabolism of parathion (diethyl-p-nitrophenyl phosphorothionate). J. Biol. Chem., 255, 1080–9

    PubMed  CAS  Google Scholar 

  • Halpert, J. R., Miller, N. E. and Gorsky, L. D. (1985). On the mechanism of the inactivation of the major phenobarbital-inducible isozyme of rat liver cytochrome P-450 by chloramphenicol. J. Biol Chem., 260, 8397–403

    PubMed  CAS  Google Scholar 

  • Hanzlik, R. P. and Tullman, R. H. (1982). Suicidal inactivation of cytochrome P-450 by cyclopropylamines. Evidence for cation-radical intermediates. J. Am. chem. Soc, 104, 2048–50

    Article  CAS  Google Scholar 

  • Järvisalo, J., Gibbs, A. H. and De Matteis, F. (1978). Accelerated conversion of heme to bile pigments caused in the liver by carbon disulfide and other sulfur-containing chemicals. Molec. Pharmacol., 14, 1099–106

    Google Scholar 

  • Jonen, H. G., Werringloer, J., Prough, R. A. and Estabrook, R. W. (1982). The reaction of phenylhydrazine with microsomal cytochrome P-450. Catalysis of heme modification. J. Biol. Chem., 257, 4404–11

    PubMed  CAS  Google Scholar 

  • Kamataki, T. and Neal, R. A. (1976). Metabolism of diethyl p-nitrophenyl phos-phorothionate (Parathion) by a reconstituted mixed-function oxidase enzyme system: studies of the covalent binding of the sulphur atom. Molec. Pharmacol., 12, 933–44

    CAS  Google Scholar 

  • Kikuchi, G., Yoshida, T. and Ishizawa, S. (1982). Effect of drugs and metals on heme degradation by the heme oxygenase system. Adv. Pharmacol Ther. Proc. Int. Congr. 8th, 5, 121–30

    CAS  Google Scholar 

  • Kunz, B. C. and Richter, C. (1983). Chemical modification of microsomal cytochrome P-450: role of lysyl residues in hydroxylation activity. FEBS Lett., 161, 311–14

    Article  PubMed  CAS  Google Scholar 

  • Kunze, K. L., Mangold, B. L. K., Wheeler, C, Beilan, H. S. and Ortiz de Montellano, P. R. (1983). The cytochrome P-450 active site. Regiospecificity of prosthetic heme alkylation by Olefins and Acetylenes. J. Biol Chem., 258, 4202–7

    PubMed  CAS  Google Scholar 

  • Levin, W. and Kuntzmann, R. (1969). Biphasic decrease of radioactive hemoprotein from liver microsomal CO-binding particles. Effect of 3-methylcholanthrene. J. Biol Chem., 244, 3671–6

    PubMed  CAS  Google Scholar 

  • Levin, M., Jacobson, M., Sernatinger, E. and Kuntzman, R. (1973). Breakdown of cytochrome P-450 heme by secobarbital and other allyl-containing barbiturates. Drug Metab. Dispos., 1, 275–84

    PubMed  CAS  Google Scholar 

  • Loev, B. and Snader, K. M. (1965). The Hantzsch Reaction. I. Oxidative dealkylation of certain dihydropyridines. J. Org. Chem., 30, 1914–16

    Article  CAS  Google Scholar 

  • Loosemore, M. J., Wogan, G. N. and Walsh, C. (1981). Determination of partition ratios for allylisopropylacetamide during suicidal processing by a phenobarbi-

    Google Scholar 

  • tone-induced cytochrome P-450 isozyme from rat liver. J. Biol Chem., 256, 8705–12

    Google Scholar 

  • Lu, A. Y. H. and West, S. B. (1980). Multiplicity of mammalian microsomal cyto-crome P-450. Pharmacol. Rev., 31, 277–95

    Google Scholar 

  • Macdonald, T. L., Zirvi, K., Burka, L. T., Peyman, P. and Guengerich, F. P. (1982). Mechanism of cytochrome P-450 inhibition by cyclopropylamines. J. Am. chem. Soc, 104, 2050–2

    Article  CAS  Google Scholar 

  • Marks, G. S., Allen, D. T., Johnston, C. T., Sutherland, E. P., Nakatsu, K. and Whitney, R. A. (1985). Suicidal destruction of cytochrome P-450 and reduction of ferrochelatase activity by 3,5-diethoxycarbonyl-l,4-dihydro-2,4,6-trimethyl-pyridine and its analogues in chick embryo liver cells. Molec. Pharmacol., 27, 459–65

    CAS  Google Scholar 

  • Menard, R. H., Guenthner, T. M., Kon, H. and Gillette, J. R. (1979). Studies on the destruction of adrenal and testicular cytochrome P-450 by spironolactone. Requirement for the 7α-thio group and evidence for the loss of heme and apo-proteins of cytochrome P-450. J. Biol Chem., 254, 1726–33

    PubMed  CAS  Google Scholar 

  • Metcalf, B. W., Wright, C. L., Burkhart, J. P. and Johnston, J. O. (1981). Substrate-induced inactivation of aromatase by allenic and acetylenic steroids. J. Am. chem. Soc, 103, 3221–2

    Article  CAS  Google Scholar 

  • Miki, N., Sugiyama, T. and Yamano, T. (1980). Purification and characterization of cytochrome P-450 with high affinity for cytochrome b5. J. Biochem., 88, 307–16

    PubMed  CAS  Google Scholar 

  • Morelli, M. A. and Nakatsugawa, T. (1978). Inactivation in vitro of microsomal oxidases during parathion metabolism. Biochem. Pharmacol., 27, 293–9

    Article  PubMed  CAS  Google Scholar 

  • Nagahisa, A., Spencer, R. W. and Orme-Johnson, W. H. (1983). Acetylenic mechanism-based inhibitors of cholesterol side chain cleavage by cytochrome P-450scc. J. Biol. Chem., 258, 6721–3

    PubMed  CAS  Google Scholar 

  • Nakatsugawa, T., Tolman, N. M. and Dahm, P. A. (1968). Degradation and activation of parathion analogues by microsomal enzymes. Biochem. Pharmacol, 17, 1517–28

    Article  PubMed  CAS  Google Scholar 

  • Neal, R. A. (1980). Microsomal metabolism of thiono-sulfur compounds: mechanisms and toxicological significance. Rev. Biochem. Toxicol., 2, 131–71

    CAS  Google Scholar 

  • Ortiz de Montellano, P. R. and Correia, M. A. (1983). Suicidal destruction of cytochrome P-450 during oxidative drug metabolism. Ann. Rev. Pharmacol. Toxicol., 23, 481–503

    Article  Google Scholar 

  • Ortiz de Montellano, P. R. and Kunze, K. L. (1981). Cytochrome P-450 inactivation: Structure of the prosthetic heme adduct with propyne. Biochemistry, 20, 7266–71

    Article  PubMed  CAS  Google Scholar 

  • Ortiz de Montellano, P. R. and Mico, B. A. (1981). Destruction of cytochrome P-450 by allylisopropylacetamide is a suicidal process. Arch. Biochem. Biophys., 206, 43–50

    Article  PubMed  CAS  Google Scholar 

  • Ortiz de Montellano, P. R. and Reich, N. O. (1984). Specific inactivation of hepatic fatty acid hydroxylases by acetylenic fatty acids. J. Biol. Chem., 259, 4136–41

    PubMed  CAS  Google Scholar 

  • Ortiz de Montellano, P. R., Mico, B. A. and Yost, G. S. (1978). Suicidal inactivation of cytochrome P-450. Formation of a heme-substrate covalent adduct. Biochem. Biophys. Res. Commun., 83, 132–7

    Article  PubMed  CAS  Google Scholar 

  • Ortiz de Montellano, P. R., Kunze, K. L., Yost, G. S. and Mico, B. A. (1979). Self-catalyzed destruction of cytochrome P-450: Covalent binding of ethynyl sterols to prosthetic heme. Proc. Nat. Acad. Sci. USA, 76, 746–9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ortiz de Montellano, P. R., Beilan, H. S. and Kunze, K. L. (1981a). N-Alkylproto-porphyrin IX: Formation in 3,5-dicarbethoxy-1,4-dihydrocollidine-treated rats. Transfer of the alkyl groups from the substrate to the porphyrin. J. Biol Chem., 256, 6708–13

    PubMed  CAS  Google Scholar 

  • Ortiz de Montellano, P. R., Beilan, H. S., Kunze, K. L. and Mico, B. A. (1981b). Destruction of cytochrome P-450 by ethylene. Structure of the resulting prosthetic heme adduct. J. Biol. Chem., 256, 4395–9

    PubMed  CAS  Google Scholar 

  • Ortiz de Montellano, P. R., Mico, B. A., Mathews, J. M., Kunze, K. L., Miwa, G. T. and Lu, A. Y. H. (1981c). Selective inactivation of cytochrome P-450 iso-enzymes by suicide substrates. Arch. Biochem. Biophys., 210, 717–28

    Article  PubMed  CAS  Google Scholar 

  • Ortiz de Montellano, P. R., Beilan, H. S. and Kunze, K. L. (1981d). N-Methyl-protoporphyrin IX: Chemical synthesis and identification as the green pigment produced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine treatment. Proc. Nat. Acad. Sci. USA, 78, 1490–4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ortiz de Montellano, P. R., Kunze, K. L. and Beilan, H. S. (1983a). Chiral orientation of prosthetic heme in the cytochrome P-450 active site. J. Biol. Chem., 258, 45–7

    PubMed  CAS  Google Scholar 

  • Ortiz de Montellano, P. R., Mangold, B. L. K., Wheeler, C, Kunze, K. L. and Riech, N. O. (1983b). Stereochemistry of cytochrome P-450-catalyzed epoxidation and prosthetic heme alky lat ion. J. Biol Chem., 258, 4208–13

    PubMed  CAS  Google Scholar 

  • Pohl, L. R. and Krishna, G. (1978). Study of the mechanism of metabolic activation of chloramphenicol by rat liver microsomes. Biochem. Pharmacol, 27, 335–41

    Article  PubMed  CAS  Google Scholar 

  • Pohl, L. R., Nelson, S. D. and Krishna, G. (1978). Investigation of the mechanism of the metabolic activation of chloramphenicol by rat liver microsomes. Identification of a new metabolite. Biochem. Pharmacol, 27, 491–6

    Article  PubMed  CAS  Google Scholar 

  • Poore, R. E. and Neal, R. A. (1972). Evidence for extrahepatic metabolism of parathion. Toxicol. appl. Pharmacol., 23, 759–68

    Article  PubMed  CAS  Google Scholar 

  • Ptashne, K. A., Wolcott, R. M. and Neal, R. A. (1971). Oxygen-18 studies on the chemical mechanisms of the mixed function oxidase catalysed desulfuration and dearylation reactions of parathion. J. Pharmacol. exptl. Ther., 179, 380–5

    Google Scholar 

  • Schwartz, S. and Ikeda, K. (1955). Studies of porphyrin synthesis and interconversion, with special reference to certain green porphyrins in animals with experimental hepatic porphyria. In: Ciba Foundation Symp: Porphyrin Biosynthesis and Metabolism (ed. G. E. W. Wolstenholme), J. & A. Churchill, London, pp. 209–26

    Google Scholar 

  • Tephly, T. R., Gibbs, A. H. and De Matteis, F. (1979). Studies on the mechanism of experimental porphyria produced by 3,5-diethoxycarbonyl-1,4-dihydro-collidine. Role of a porphyrin-like inhibitor of protohaem ferro-lyase. Biochem. J., 180, 241–4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tephly, T. R., Coffman, B. L., Ingall, G., Abou Zeit-Har, M. S., Goff, H. M., Tabba, H. D. and Smith, K. M. (1981). Identification of N-methylprotoporphyrin IX in livers of untreated mice and mice treated with 3,5-diethoxycarbonyl-1,4-di-hydrocollidine: source of the methyl group. Arch. Biochem. Biophys., 212, 120–6

    Article  PubMed  CAS  Google Scholar 

  • Unseld, A. and De Matteis, F. (1978). Destruction of endogenous and exogenous haem by 2-allyl-2-isopropylacetamide: role of the liver cytochrome P-450 which is inducible by phenobarbitone. Int. J. Biochem., 9, 865–9

    Article  PubMed  CAS  Google Scholar 

  • Wada, O., Yano, Y., Urata, G. and Nakao, K. (1968). Behaviour of hepatic micro-somal cytochromes after treatment of mice with drugs known to disturb por-phyrin metabolism in liver. Biochem. Pharmacol., 17, 595–603

    Article  PubMed  CAS  Google Scholar 

  • Waxman, D. J. and Walsh, C. (1982). Phenobarbital-induced rat liver cytochrome P-450: purification and characterization of two closely related isozymic forms. J. Biol. Chem., 257, 10446–57

    PubMed  CAS  Google Scholar 

  • White, I. N. H. (1978). Metabolic activation of acetylenic substituents to derivatives in the rat causing the loss of hepatic cytochrome P-450 and haem. Biochem. J., 174, 853–61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • White, I. N. H. (1981). Destruction of liver haem by norethindrone. Conversion into green pigments. Biochem. J., 196, 575–83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • White, I. N. H. (1982). Biliary excretion of green pigments produced by norethindrone in the rat. Biochem. Pharmacol., 31, 1337–42

    Article  PubMed  CAS  Google Scholar 

  • White, I. (1984). Suicidal destruction of cytochrome P-450 by ethynyl substituted compounds. Pharmaceut. Res., 141–88

    Google Scholar 

  • White, R. E. and Coon, M. J. (1980). Oxygen activation by cytochrome P-450. Ann. Rev. Biochem., 49, 315–56

    Article  PubMed  CAS  Google Scholar 

  • White, I. N. H. and Muller-Eberhard, U. (1977). Decreased liver cytochrome P-450 in rats caused by norethindrone or ethynyloestradiol. Biochem. J., 166, 57–64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Authors

Copyright information

© 1987 F. De Matteis

About this chapter

Cite this chapter

De Matteis, F. (1987). Drugs as Suicide Substrates of Cytochrome P-450. In: Selectivity and Molecular Mechanisms of Toxicity. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-08759-4_8

Download citation

Publish with us

Policies and ethics