Skip to main content

Serotonin Neurones and Receptors in Alzheimer’s Disease

  • Chapter
Book cover New Concepts in Alzheimer’s Disease

Abstract

Recent research into the senile and presenile dementias (collectively termed Alzheimer’s disease) has concentrated on deficits in the cholinergic system (see, for example, Perry and Perry, 1980; Rossor, 1982; Sims and Bowen, 1983), and there is much circumstantial and direct evidence to link the cholinergic deficit with the cognitive deterioration seen in this disease (Perry et al., 1978; Drachman, 1981; Francis et al., 1985). Nevertheless, there are selective deficits in other neurotransmitter pathways in Alzheimer’s disease and, in particular, losses of somatostatin-containing cells and ascending aminergic pathways have been reported (for a recent review see Hardy et al., 1985). The relationship of these changes in non-cholinergic neurones to the cognitive and behavioural deterioration seen in Alzheimer’s disease is not yet understood but it would be surprising if the changes seen in aminergic pathways were not in some way related to aspects of the personality changes manifested in this disease (Semple et al., 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adolfsson, R., Gottfries, C. G., Roos, B. E., and Winblad, B. (1979). Changes in the brain catecholamines in patients with dementia of Alzheimer type. Brit. J. Psychiat., 135, 216–23.

    Article  CAS  PubMed  Google Scholar 

  • Arai, H., Kosaka, K., and Iizuka, R. (1984). Changes of biogenic amines and their metabolites in postmortem brains from patients with Alzheimer-type dementia. J. Neurochem., 43, 388–93.

    Article  CAS  PubMed  Google Scholar 

  • Bareggi, S. R., Franceschi, M., Bonini, L., Zecca, L., and Smirne, S. (1982). Decreased CSF concentrations of homovanillic acid and 7-aminobutyric acid in Alzheimer’s disease. Arch. Neurol., 39, 709–12.

    Article  CAS  PubMed  Google Scholar 

  • Bowen, D. M. (1983). Biochemical assessment of neurotransmitter and metabolic dysfunction and cerebral atrophy in Alzheimer’s disease. In Katzman, R. (ed.), Biological Aspects of Alzheimer’s Disease, Banbury Report, 15, Cold Spring Harbor, 219–31.

    Google Scholar 

  • Bowen, D. M. (1984). Cellular Ageing: Selective vulnerability of cholinergic neurones in human brain. In Sauer, H. W. (ed.), Monographs in Developing Biology, Karger, Basel, pp. 42–59.

    Google Scholar 

  • Bowen, D. M., and Davison, A. N. (1985). Biochemical studies of nerve cells and energy metabolism in Alzheimer’s disease. Brit. Med. Bull., 42, 75–80.

    Google Scholar 

  • Bowen, D. M., White, P., Spillane, J. A., Goodhardt, M. J., Curzon, G., Iwangoff, P., Meier-Ruge, W., and Davison, A. N. (1979). Accelerated ageing or selective neuronal loss an important cause of dementia? Lancet, i, 11–14.

    Google Scholar 

  • Bowen, D. M., Allen, S. J., Benton, J. S., Goodhardt, M. J., Haan, E. A., Palmer, A. M., Sims, N. R., Smith, C. C. T., Spillane, J. A., Esiri, M. M., Neary, D., Snowdon, J. S., Wilcock, G. K., and Davison, A. N. (1983). Biochemical assessment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer’s disease. J. Neurochem., 41, 266–72.

    Article  CAS  PubMed  Google Scholar 

  • Bowen, D. M., Davison, A. N., Francis, P. T., et al. (1985). Neurotransmitter and metabolic dysfunction in Alzheimer’s dementia: Relationship to histopathological features. In Rose, F. C. (ed.), Modern Approaches to the Dementias, Karger, Basel, pp. 156–74.

    Google Scholar 

  • Butterworth, R. F. (1983). Metabolism of glutamate and related amino acids in insulin hypoglycaemia. In Hertz, L., Kvamme, E., McGeer, E. G., and Schoushoe, A. (eds), Glutamine, Glutamate, and GABA in the Central Nervous System, Alan R. Liss, New York, pp. 595–608.

    Google Scholar 

  • Byerley, W. F., and Risch, S. C. (1985). Depression and serotonin metabolism: Rationale for neurotransmitter precursor treatment. J. Clin. Psychopharm., 5, 191–206.

    Article  CAS  Google Scholar 

  • Carlsson, A., Adolfsson, R., Aquilonius, S-M., Gottfries, C-G., Oreland, L., Svennerholm, L., and Winblad, B. (1980). Biogenic amines in human brain in normal aging, senile dementia, and chronic alcoholism. Adv. Biochem. Psychopharmac., 23, 295–304.

    CAS  Google Scholar 

  • Cross, A. J., Crow, T. J., Ferrier, I. N., and Johnson, J. A. (1986). The selectivity of the reduction of serotonin S2 receptors in Alzheimer-type dementia. Neurobiol. Aging (In press).

    Google Scholar 

  • Cross, A. J., Crow, T. J., Ferrier, I. N., Johnson, J. A., Bloom, S. R., and Corsellis, J. A. N. (1984a). Serotonin receptor changes in dementia of the Alzheimer type. J. Neurochem., 43, 1574–81.

    Article  CAS  PubMed  Google Scholar 

  • Cross, A. J., Crow, T. J., Johnson, J. A., Perry, E. K., Perry, R. H., Blessed, G., and Tomlinson, B. E. (1984b). Studies on neurotransmitter receptor systems in neocortex and hippocampus in senile dementia of the Alzheimer-type. J. neurol. Sci., 64, 109–17.

    Article  CAS  PubMed  Google Scholar 

  • Cross, A. J., Crow, T. J., Johnson, J. A., Joseph, M. H., Perry, E. K., Perry, R. H., Blessed, G., and Tomlinson, B. E. (1983). Monoamine metabolism in senile dementia of Alzheimer type. J. neurol. Sci., 60, 383–92.

    Article  CAS  PubMed  Google Scholar 

  • Crow, T. J., Cross, A. J., Cooper, S. J., Deakin, J. F. W., Ferrier, I. N., Johnson, J. A., Joseph, M. H., Owen, F., Poulter, M., Lofthouse, R., Corsellis, J. A. N., Chambers, D. R., Blessed, G., Perry, E. K., Perry, R. H., and Tomlinson, B. E. (1984). Neurotransmitter receptors and monoamine metabolites in the brains of patients with Alzheimer-type dementia and depression, and suicides. Neuropharmac., 23, 1561–9.

    Article  CAS  Google Scholar 

  • Curcio, C. A., and Kemper, T. (1984). Nucleus raphe dorsalis in dementia of Alzheimer type: Neurofibrillary changes and neuronal packing density, J. Neuropathol. exp. Neurol., 43, 359–68.

    Article  CAS  PubMed  Google Scholar 

  • DeBoni, U., and Crapper McLachlan, D. R. (1985). Controlled induction of paired helical filaments of the Alzheimer type in cultured human neurones, by glutamate and aspartate. J. neurol. Sci., 68, 105–18.

    Article  CAS  Google Scholar 

  • Drachman, D. A. (1981). The cholinergic system, memory, and aging. In Enna, S. J., Samorajski, T., and Beer, B. (eds.), Brain Neurotransmitters and Receptors in Aging and Age-Related Disorders, Aging, Vol. 17. Raven Press, New York, pp. 255–68.

    Google Scholar 

  • Engel, G., Göthert, M., Müller-Schweinitzer, E., Schlicker, E., Sistonen, L., and Stadler, P. A. (1983). Evidence for common pharmacological properties of (3H)5-hydroxy-tryptamine binding sites, presynaptic 5-hydroxytryptamine autoreceptors in CNS and inhibitory presynaptic 5-hydroxytryptamine receptors on sympathetic nerves. Naunyn Schmiedeberg’s Arch. Pharmac., 324, 116–24.

    Article  CAS  Google Scholar 

  • Francis, P. T., Palmer, A. M., Sims, N. R., Bowen, D. M., Davison, A. N., Esiri, M. M., Neary, D., Snowden, J. S., and Wilcock, G. K. (1985). Neurochemical studies in early-onset Alzheimer’s disease: Possible influence on treatment. New Eng. J. Med., 313, 7–11.

    Article  CAS  PubMed  Google Scholar 

  • Gibson, C. J., Logue, M., and Growdon, J. H. (1985). CSF monoamine metabolite levels in Alzheimer’s and Parkinson’s disease. Arch. Neurol., 42, 489–92.

    Article  CAS  PubMed  Google Scholar 

  • Gottfries, C. G., and Roos, B. E. (1973). Acid monoamine metabolites in cerebrospinal fluid from patients with presenile dementia (Alzheimer’s disease). Acta Psychiat. Scand., 49, 257–63.

    Article  Google Scholar 

  • Gottfries, C. G., Gottfries, I., and Roos, B. E. (1969). Homovanillic acid and 5-hydroxy-indoleacetic acid in the cerebrospinal fluid of patients with senile dementia, presenile dementia and Parkinsonism. J. Neurochem., 16, 1341–5.

    Article  CAS  PubMed  Google Scholar 

  • Gottfries, C. G., Kjallquist, A., Pontén, U., Roos, B. E., and Sundbarg, G. (1974). Cerebrospinal fluid pH and monoamine and glucolytic metabolites in Alzheimer’s disease. Brit. J. Pharmac., 124, 280–7.

    CAS  Google Scholar 

  • Gottfries, C.-G., Adolfsson, R., Aquilonius, S.-M., Carlsson, A., Eckernäs, S.-A., Nordberg, A., Oreland, L., Svennerholm, L., Wiberg, A., and Winblad, B. (1983). Biochemical changes in dementia disorders of Alzheimer type (AD/SDAT). Neurobiol. Aging, 4, 261–71.

    Article  CAS  PubMed  Google Scholar 

  • Gozlan, H., El Mestikawy, S., Pichat, L., Glowinski, J., and Hamon, M. (1983). Identification of presynaptic serotonin autoreceptors using a new ligand: 3H-PAT. Nature, 305, 140–2.

    Article  CAS  PubMed  Google Scholar 

  • Hardy, J., Adolfsson, R., Alafuzoff, I., Bucht, G., Marcusson, J., Nyberg, P., Perdahl, E., Wester, P., and Winblad, B. (1985). Transmitter deficits in Alzheimer’s disease. Neurochem. Int., 7, 545–63.

    Article  CAS  PubMed  Google Scholar 

  • Hefti, F. (1983). Is Alzheimer disease caused by lack of nerve growth factor? Ann. Neurol., 13, 109–10.

    Article  CAS  PubMed  Google Scholar 

  • Hunter, B., Zornetzer, S. F., Jarvik, M. E., and McGaugh, J. L. (1977). Modulation of learning and memory: Effects of drugs influencing neurotransmitters. In Iversen, L. L., Iversen, S. D., and Snyder, S. H. (eds.), Handbook of Psychopharmacology, Vol. 8. Plenum Press, New York, pp. 531–77.

    Google Scholar 

  • Ishii, T. (1966). Distribution of Alzheimer’s neurofibrillary changes in the brain stem and hypothalamus of senile dementia. Acta Neuropathologica, 6, 181–7.

    Article  CAS  PubMed  Google Scholar 

  • Kay, A. D., Milstien, S., Kaufman, S., Rapoport, S. I., and Cutler, N. R. (1984). 5-HIAA and HVA in the CSF of patients with Alzheimer’s disease. Neurol., 34, (Suppl. 1), 161.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193, 265–75.

    CAS  PubMed  Google Scholar 

  • McGeer, P. L., and McGeer, E. G. (1981). Neurotransmitters in the aging brain. In Thompson, R. H. S., and Davison, A. N. (eds.), The Molecular Basis of Neuropathology, Edward Arnold, London, pp. 631–48.

    Google Scholar 

  • Mann, D. M. A., and Yates, P. O. (1983). Serotonin nerve cells in Alzheimer’s disease. J. Neurol Neurosurg. Psychiat., 46, 96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mann, D. M. A., Yates, P. O., and Marcyniuk, B. (1984). Alzheimer’s presenile dementia, senile dementia of Alzheimer type and Down’s syndrome in middle age form an age related continuum of pathological changes. Neuropath. Appl. Neurobiol., 10, 185–207.

    Article  CAS  Google Scholar 

  • Marcinkiewicz, M., Vergé, D., Gozlan, H., Pichat, L., and Hamon, M. (1984). Autoradiographic evidence for the heterogeneity of 5-HT1 sites in the rat brain. Brain Res., 291, 159–63.

    Article  CAS  PubMed  Google Scholar 

  • Middlemiss, D. N. (1982). Multiple 5-hydroxytryptamine receptors in the central nervous system of the rat. In De Belleroche, J. (ed.), Presynaptic Receptors: Mechanisms and Functions, Ellis Horwood, Chichester, pp. 46–74.

    Google Scholar 

  • Middlemiss, D. N. (1985). Does 8-hydroxy (di-N-3H-propylamino)tetralin ((3H)8-OH-DPAT) label the 5-HT1A recognition site in rat frontal cortex? J. de Pharmacologie, 16, 495.

    Google Scholar 

  • Middlemiss, D. N., and Fozard, J. R. (1983). 8-Hydroxy-2-(di-n-propylamino)-tetralin discriminates between subtypes of the 5-HT1 recognition site. Eur. J. Pharmac., 90, 151–3.

    Article  CAS  Google Scholar 

  • Middlemiss, D. N., Palmer, A. M., Edel, N., and Bowen, D. M. (1986). Binding of the novel serotonin agonist 8-hydroxy-2-(di-n-propylamino)tetralin in normal and Alzheimer brain. J. Neurochem., 46, 993–6.

    Article  CAS  PubMed  Google Scholar 

  • Neary, D., Snowdon, J. S., Mann, D. M. A., Bowen, D. M., Sims, N. R., Northern, B., Yates, P. O., and Davison, A. N. (1985). Alzheimer’s disease: A correlative study. J. Neurosurg. Psychiat. (In press).

    Google Scholar 

  • Ogren, S. O. (1982). Central serotonin neurones and learning in the rat. In Osborne, N. N. (ed.), Biology of Serotonergic Transmission. John Wiley, Chichester, pp. 317–35.

    Google Scholar 

  • Ogren, S. O., Fuxe, K., Archer, T., Hall, H., Holm, A. C., and Kohler, C. (1981). Studies on the role of central 5-HT neurones in avoidance learning: A behavioral and biochemical analysis. In Haber, B., Gabay, S., Issidorides, M. R., and Alivisatos, S. G. A. (eds.), Serotonin: Current Aspects of Neurochemistry and Function, Adv. Exp. Med. Biol. Vol. 133. Plenum Press, New York, pp. 681–705.

    Chapter  Google Scholar 

  • Palmer, A. M., Sims, N. R., Bowen, D. M., Neary, D., Palo, J., Wikstrom, J., and Davison, A. N. (1984). Monoamine metabolite concentrations in lumbar cerebrospinal fluid of patients with histologically verified Alzheimer’s dementia. J. Neurol. Neurosurg. Psychiat., 47, 481–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson, R. C. A., Esiri, M. M., Hiorns, R. W., Wilcock, G. K., and Powell, T. P. S. (1985). Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer’s disease. Proc. Nat. Acad. Sci. USA, 82, 4531–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedigo, N. W., Yamamura, H. I., and Nelson, D. L. (1981). Discrimination of multiple (3H)5-hydroxytryptamine binding sites by the neuroleptic spiperone in rat brain. J. Neurochem., 36. 220–6.

    Article  CAS  PubMed  Google Scholar 

  • Peroutka, S. J., and Snyder, S. H. (1979). Multiple serotonin receptors: Differential binding of (3H)5-hydroxytryptamine, (3H)lysergic acid diethylamide and (3H)spiroperidol. Mol. Pharmac., 16, 687–99.

    CAS  Google Scholar 

  • Perry, E. K., and Perry, R. H. (1980). The cholinergic system in Alzheimer’s disease. In Roberts, P. J. (ed.), Biochemistry of Dementia. John Wiley, Chichester, pp. 135–83.

    Google Scholar 

  • Perry, E. K., Tomlinson, B. E., Blessed, G., Bergman, K., Gibson, P. H., and Perry, R. H. (1978). Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br. Med. J., 2, 1457–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry, E. K., Perry, R. H., Candy, J. M., Fairbairn, A. F., Blessed, G., Dick, D. J., and Tomlinson, B. E. (1984). Cortical serotonin-S2 receptor binding abnormalities in patients with Alzheimer’s disease: Comparisons with Parkinson’s disease. Neurosci. Letts., 51, 353–7.

    Article  CAS  Google Scholar 

  • Rehavi, M., Paul, S. M., Skolnick, P., and Goodwin, F. K. (1980). Demonstration of specific high affinity binding sites for (3H)imipramine in human brain. Life Sci., 26, 2273–9.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds, G. P., Arnold, L., Rossor, M. N., Iversen, L. L., Mountjoy, C. Q., and Roth, M. (1984). Reducing binding of (3H)ketanserin to cortical 5-HT2 receptors in senile dementia of the Alzheimer type. Neurosci. Lett., 44, 47–51.

    Article  CAS  PubMed  Google Scholar 

  • Rossor, M. N. (1982). Dementia. Lancet, i, 1200–4.

    Article  Google Scholar 

  • Rudge, J. S., Manthorpe, M. and Varon, S. (1985). The output of neuronotrophic and neurite-promoting agents from rat brain astoglial cells: A microculture method for screening potential regulatory molecules. Develop. Brain Res., 19, 161–72.

    Article  CAS  Google Scholar 

  • Semple, S. A., Smith, C. M., and Swash, M. (1982). The Alzheimer disease syndrome. In Corkin, S., Davis, K. L., Growdon, J. H., Usdin, E., and Wurtman, R. J. (eds.), Alzheimer’s Disease: A Report of Progress in Research, Raven Press, New York, 93–108.

    Google Scholar 

  • Schnellmann, R. G., Waters, S. J., and Nelson, D. L. (1984). (3H)5-Hydroxytryptamine binding sites: Species and tissue variation. J. Neurochem., 42, 65–70.

    Article  CAS  PubMed  Google Scholar 

  • Sims, N. R., and Bowen, D. M. (1983). Changes in choline acetyltransferase and acetylcholine synthesis. In Reisberg, B. (ed.), Alzheimer’s Disease. The Standard Reference. Macmillan, New York, pp. 88–92.

    Google Scholar 

  • Sims, N. R., Bowen, D. M., Neary, D., and Davison, A. N. (1983). Metabolic processes in Alzheimer’s disease: Adenine nucleotide content and product of 14CO2 from (U-14C) glucose in vitro in human neocortex. J. Neurochem., 41, 1329–4.

    Article  CAS  PubMed  Google Scholar 

  • Sims, N. R., Finegan, J. M., Bowen, D. M., and Blass, J. P. (1985). Mitochondrial function in Alzheimer’s disease measured in vitro using neocortical tissue homogenates. J. Neurochem., 44, (Suppl.), S192A.

    Google Scholar 

  • Smith, C. G. T., Bowen, D. M., Francis, P. T., Snowden, J. S., and Neary, D. (1985). Putative amino acid transmitters in lumbar cerebrospinal fluid of patients with histologically verified Alzheimer’s dementia. J. Neurol. Neurosurg. Psychiat., 48, 469–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soininen, H., MacDonald, E., Rekonen, M., and Riekkinen, P. J. (1981). Homovanillic acid and 5-hydroxy indoleacetic acid levels in cerebrospinal fluid of patients with senile dementia of Alzheimer type. Acta. Neurol. Scand., 64, 101–7.

    Article  CAS  PubMed  Google Scholar 

  • Tarbit, I., Perry, E. K., Perry, R. H., Blessed, G., and Tomlinson, B. E. (1980). Hippocampal free amino acids in Alzheimer’s disease. J. Neurochem., 35, 1246–9.

    Article  CAS  Google Scholar 

  • Terry, R. D. (1978). Ultrastructural alterations in senile dementia. In Katzman, R., Terry, R. D., and Bick, K. L. (eds.), Alzheimer’s Disease, Senile Dementia and Related Disorders. Raven Press, New York, pp. 375–82.

    Google Scholar 

  • Weingartner, H., Buchsbaum, M. S., andLinnoila, M. (1983a). Zimelidine effects on memory impairments produced by ethanol. Life Sci., 33, 2159–63.

    Article  CAS  PubMed  Google Scholar 

  • Weingartner, H., Rudorfer, M. V., Buchsbaum, M. S., and Linnoila, M. (1983b). Effects of serotonin on memory impairments produced by ethanol. Science, 221, 472–4.

    Article  CAS  PubMed  Google Scholar 

  • Wood, P. L., Etienne, P., Lal, S., Gauthier, S., Cajal, S., and Nair, N. P. V. (1982). Reduced lumbar CSF somatostatin levels in Alzheimer’s disease. Life Sci., 31, 2073–9.

    Article  CAS  PubMed  Google Scholar 

  • Yamada, M., and Mehraein, P. (1977). Verteilungsmuster der senilen Veränderungen in den Hirnstammkernen. Folia Psychiat. Neurol., 31, 219–24.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1986 The Editors and the Contributors

About this chapter

Cite this chapter

Middlemiss, D.N., Bowen, D.M., Palmer, A.M. (1986). Serotonin Neurones and Receptors in Alzheimer’s Disease. In: Briley, M., Kato, A., Weber, M. (eds) New Concepts in Alzheimer’s Disease. Palgrave, London. https://doi.org/10.1007/978-1-349-08639-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-08639-9_8

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-08641-2

  • Online ISBN: 978-1-349-08639-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics