Skip to main content

In Search of Possible Markers and Models in Alzheimer’s Disease

  • Chapter
New Concepts in Alzheimer’s Disease
  • 5 Accesses

Abstract

The search for therapeutic agents effective in Alzheimer’s disease is hampered by two major problems. First, there is no specific animal model which reproduces the biochemical, morphological and behavioural characteristics of the disease. Thus drug screening tends to be based on the search for a biochemical activity considered to be necessary in the therapy of Alzheimer’s disease. This is the case in the search for cholinomimetic agents as a replacement therapy for the defective cholinergic innervation in the cortex and hippocampus. The extrapolation from screening to clinical testing in these cases is, however, extremely uncertain. The second difficulty is that of diagnosis. Since Alzheimer’s disease is a progressive, degenerative disease, any therapy would be expected to be most effective in the early stages when the deficiency is less marked and the cause possibly still reversible. Unfortunately, at this very early stage the symptoms of Alzheimer’s disease are easily confused with those of various other psychiatric and neurological diseases such as depression and Parkinsonism, and even iatrogenic conditions such as subacute benzodiazepine toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Briley, M., Raisman, R., and Langer, S. Z. (1979). Human platelets possess high-affinity binding sites for 3H-imipramine. Europ. J. Pharmacol., 58, 347–8.

    Article  CAS  Google Scholar 

  • Coyle, J. T., Price, D. L., and Dehong, M. R. (1983). Alzheimer’s disease: A disorder of cortical cholinergic innervation. Science, 219, 1184–90.

    Article  CAS  PubMed  Google Scholar 

  • Flicker, C., Dean, R. L., Watkins, D. L., Fisher, S. K., and Bartus, R. T. (1983). Behavioral and neurochemical effects following neurotoxic lesions of a major cholinergic input to the cerebral cortex in the rat. Pharmacol Biochem. Behav., 18, 973–81.

    Article  CAS  PubMed  Google Scholar 

  • Fonnum, F. (1975). A rapid radiochemical method for the determination of choline acetyltransferase. J. Neurochem., 24, 407–9.

    Article  CAS  PubMed  Google Scholar 

  • Gage, F. H., Kelly, P. A. T., and Björklund, A. (1984). Regional changes in brain glucose metabolism reflect cognitive impairments in aged rats. J. Neuroscience, 4, 2856–65.

    CAS  PubMed  Google Scholar 

  • Green, A. R., Boullin, D. J., Massarelli, R., and Hanin, I. (1972). Can the platelet be used as a model for the cholinergic nerve ending? Life Sciences, 11, 1049–58.

    Article  CAS  Google Scholar 

  • Haroutunian, V., Kanof, P., and Davis, K. L. (1985). Pharmacological alleviation of cholinergic lesion induced memory deficits in rats. Life Sciences, 37, 945–52.

    Article  CAS  PubMed  Google Scholar 

  • Langer, S. Z., and Briley, M. (1981). High-affinity 3H-imipramine binding: A new biological tool for studies in depression. Trends in Neurosci., 4, 28–31.

    Article  Google Scholar 

  • McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., and Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease. Neurology, 34, 939–43.

    Article  CAS  PubMed  Google Scholar 

  • Mantione, C. R., Fisher, A., and Hanin, I. (1981). AF64A Neurotoxicity: A potential animal model of central cholinergic hypofunction. Science, 213, 579–80.

    Article  CAS  PubMed  Google Scholar 

  • Sandberg, K., Schnaar, R. L., McKinney, M., Hanin, I., Fisher, A., and Coyle, J. T. (1985). AF64A: An active site directed irreversible inhibitor of choline acetyltransferase. J. Neurochem., 44, 439–45.

    Article  CAS  PubMed  Google Scholar 

  • Sims, N. R., Bowen, D. M., Smith, C. I., Flack, R. H., Davison, A. N., Snowden, J. S., and Neary, D. (1980). Glucose metabolism and acetylcholine synthesis in relation to neuronal activity in Alzheimer’s disease. Lancet, i, 333–5.

    Article  Google Scholar 

  • Sneddon, J. M. (1973). Blood platelets as a model for monoamine containing neurons. Prog. Neurobiol., 1, 151–98.

    Article  CAS  PubMed  Google Scholar 

  • Stahl, S. M., and Meitzer, H. Y. (1978). A kinetic and pharmacological analysis of 5-hydroxy-tryptamine transport by human platelets and platelet storage granules: Comparison with central serotonergic neurons. J. Pharmac. Exp. Therap., 205, 118–32.

    CAS  Google Scholar 

  • Sullivan, J. L., Cavenar, J. O., Maltbie, A. A., Lister, P., and Zung, W. W. K. (1979). Familial biochemical and clinical correlates of alcoholics with low platelet monoamine oxidase activity. Biol. Psychiatry, 14, 385–94.

    CAS  PubMed  Google Scholar 

  • Watson, M., Roeske, W. R., and Yamamura, H. I. (1982). 3H-Pirenzepine selectively identifies a high affinity population of muscarinic cholinergic receptors in the rat cerebral cortex. Life Sci., 31, 2019–23.

    Article  CAS  PubMed  Google Scholar 

  • Yamamura, H. I., and Snyder, S. H. (1974). Muscarinic cholinergic binding in rat brain. Proc. Nat. Acad. Sci., 71, 1725–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1986 The Editors and the Contributors

About this chapter

Cite this chapter

Briley, M., Brown, M., Chopin, P., Heral, X., Moret, C. (1986). In Search of Possible Markers and Models in Alzheimer’s Disease. In: Briley, M., Kato, A., Weber, M. (eds) New Concepts in Alzheimer’s Disease. Palgrave, London. https://doi.org/10.1007/978-1-349-08639-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-08639-9_6

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-08641-2

  • Online ISBN: 978-1-349-08639-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics