The ‘Autocannibalism’ of Choline-containing Membrane Phopholipids in the Pathogenesis of Alzheimer’s Disease

  • R. J. Wurtman
  • J. Bluszajn
  • J.-C. Maire
Chapter

Abstract

Brains of patients with Alzheimer’s disease exhibit an abundance of possible clues as to the aetiology of the disease and the pathophysiologic processes causing its signs and symptoms (Wurtman, 1985). These include: characteristic aggregations of abnormal proteins in neurons (neurofibrillary tangles) and extracellular spaces (plaques; amyloid); concentrations of a potentially neurotoxic environmental contaminant, aluminium, within affected neurons; and an abnormal aggregate, amyloid, which may itself constitute an infectious particle (‘prion’). Additional clues as to the aetiology and pathogenesis of Alzheimer’s disease may also be provided by the patient’s family history — which sometimes reveals a strong genetic component to the disease — or by data, obtained using scanning devices, which show major reductions in brain blood flow and in oxygen and energy consumption.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, T., Haga, T., and Kurokawa, M. (1973). Rapid transport of phosphatidylcholine occurring simultaneously with protein transport in the frog sciatic nerve. Biochem. J., 136, 731–40.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ansell, G. B. (1973). Phospholipids and the nervous system. In Ansell, G. B., Hawthorne, J. N. and Dawson, R. M. C. (eds.), Form and Function of Phospholipids. Elsevier, Amsterdam, 377–422.Google Scholar
  3. Birks, R. I. (1974). The relationship of transmitter release and storage to the fine structure in a sympathetic ganglion. J. Neurocytol., 3, 133–60.CrossRefPubMedGoogle Scholar
  4. Birks, R. I., and Macintosh, F. C. (1961). Acetylcholine metabolism of a sympathetic ganglion. Can. J. Biochem. Physiol., 39, 787–827.CrossRefGoogle Scholar
  5. Blusztajn, J. K., and Wurtman, R. J. (1981). Choline biosynthesis by a preparation enriched in synaptosomes from rat brain. Nature, 290, 417–18.CrossRefPubMedGoogle Scholar
  6. Blusztajn, J. K. and Wurtman, R. J. (1983). Choline and cholinergic neurons. Science, 221, 614–20.CrossRefPubMedGoogle Scholar
  7. Bowen, D. M., Benton, J. S., Spillane, J. A., Smith, C. C. T., and Allen, S. J. (1982). Choline acetyltransferase activity and histopathology of frontal neocortex biopsies of demented patients. J. neurol. Sci., 57, 191–202.CrossRefGoogle Scholar
  8. Corradetti, R., Lindmar, R., and Loffelholz, K. (1983). Mobilization of cellular choline by stimulation of muscarinic receptors in isolated chicken heart and rat cortex in vivo. J. Pharmacol exp. Ther:, 226, 826–32.PubMedGoogle Scholar
  9. Droz, B., Brunetti, M., Di Giambernadino, L., Koenig, H. L., and Porcellati, G. (1981). Axonal transport of phosphoglycerides to cholinergic synapses. In Pepeu, G. (ed.), Cholinergic Mechanisms. Plenum Press, New York, 377–86.CrossRefGoogle Scholar
  10. Maire, J.-C., Tacconi, M. T., and Wurtman, R. J. (1983). Source of choline for the release of choline and acetylcholine from brain slices. Soc. Neurosci., 9, 283.8 (abstract).Google Scholar
  11. Mandybur, T. I. (1975). The incidence of cerebral amyloid angiopathy in Alzheimer’s disease. Neurology (Minneap.), 25, 120–6.CrossRefGoogle Scholar
  12. Parducz, A., Kiss, Z., and Joo, F. (1976). Changes of the phosphatidylcholine content and the number of synaptic vesicles in relation to neurohumoral transmission in sympathetic ganglia. Experientia, 32, 1520–1.CrossRefPubMedGoogle Scholar
  13. Pearson, R. C. A., Sofroniew, M. V., Cuello, A. C., Powell, T. P. S., Eckenstein, S., Esiri, M. M., and Wilcock, G. K. (1983). Persistence of cholinergic neurons in the basal nucleus in a brain with senile dementia of the Alzheimer’s type demonstrated by immunohistochemical staining for choline acetyltransferase. Brain Research, 289, 375–9.CrossRefPubMedGoogle Scholar
  14. Perry, R. H., Candy, J. M., Perry, E. K., Irving, D., Blessed, G., Fairbairn, A. F., and Tomlinson, B. E. (1985). Extensive loss of choline acetyltransferase activity is not reflected by neuronal loss in the nucleus of Meynert in Alzheimer’s disease. Neurosci. Lett., 33, 311–15.CrossRefGoogle Scholar
  15. Perry, E. K., Tomlinson, B. E., Blessed, G., Bergman, K., Gibson, P. H., and Perry, R. H. (1978). Correlations of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Brit. J. Med., 2, 1458–9.CrossRefGoogle Scholar
  16. Wilcock, G. K., Esiri, M. M., Bowen, D. M., and Smith, C. C. T. (1982). Alzheimer’s disease: correlation of cortical choline acetyltransferase activity with the severity of dementia and histological abnormalities. J. neurol. Sci., 57, 407–17.CrossRefPubMedGoogle Scholar
  17. Wurtman, R. J. (1985). Alzheimer’s disease. Scientific American, 252, 62–75.CrossRefPubMedGoogle Scholar

Copyright information

© The Editors and the Contributors 1986

Authors and Affiliations

  • R. J. Wurtman
  • J. Bluszajn
  • J.-C. Maire

There are no affiliations available

Personalised recommendations