Skip to main content

Glutamate Receptors and Glutamate Corticofugal Pathways

  • Chapter
Excitatory Amino Acids

Abstract

Although the neurochemical anatomy of many pathways in human brain has been studied, little attention has been paid to the human pyramidal system. This pathway is very important for voluntary motor control in vertebrates, and pyramidal tract pathology leads to hemiparesis or hemiplegia in primates and man (Phillips and Porter, 1977). Identification of the neurotransmitter of the pyramidal tract would allow a more systematic investigation of drugs for the treatment of the neurological consequences of stroke, spinal cord and head trauma, multiple sclerosis, amyotrophic lateral sclerosis and cerebral palsy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bromberg, M.B., Penney Jr., J.B., Stephenson, B.S. and Young, A.B. (1981). Evidence for glutamate as the neurotransmitter of corticothalamic and corticorubral pathways. Brain Res., 215, 369–374.

    Article  PubMed  CAS  Google Scholar 

  • Divac, I., Fonnum, F. and Storm-Mathisen, J. (1977). High affinity uptake of glutamate in terminals of corticostriatal axons. Nature, 266, 377–378.

    Article  PubMed  CAS  Google Scholar 

  • Fink, R.P. and Heimer, L. (1967). Two methods for selective impregnation of degenerating axons and their synaptic endings in the central nervous system. Brain Res., 4, 369–374.

    Article  PubMed  CAS  Google Scholar 

  • Fonnum, R., Soreide, A., Kvale, I., Walker, J. and Walaas, I. (1981). Glutamate in cortical fibers. Biochem. Psychopharmacol., 27. 29–42.

    CAS  Google Scholar 

  • Foster, N.L., Chase, T.N., Fedio, P., Petronas, N.J., Brooks, R.A., and DiChiro, G. (1983). Alzheimer’s disease: Focal cortical changes shown by positron emission tomography. Neurology, 33, 961–965.

    Article  PubMed  CAS  Google Scholar 

  • Greenamyre, J.T., Olson, J.M.M., Penney, J.B. and Young, A.B. (1985a). Autoradiographic characterization of N-methyl-D-aspartate-, quisqualate- and kainate-sensitive glutamate binding sites. J. Pharmacol. Exp. Ther., 233, 254–263.

    PubMed  CAS  Google Scholar 

  • Greenamyre, J.T., Penney, J.B., Young, A.B., D’Amato, C.J., Hicks, S.P. and Shoulson, I. (1985b). Alterations in L-glutamate binding in Alzheimer’s and Huntington’s diseases. Science, 227, 1496–1499.

    Article  PubMed  CAS  Google Scholar 

  • Greenamyre, J.T., Young, A.B. and Penney, J.B. (1983). Quantitative autoradiography of L-[3H]glutamate binding to rat brain. Neurosci. Lett., 37, 155–160.

    Article  PubMed  CAS  Google Scholar 

  • Greenamyre, J.T., Young, A.B. and Penney. J.B. (1984). Quantitative autoradiographic distribution of L-[3H]glutamate binding sites in rat central nervous system. J. Neurosci., 4, 2133–2144.

    PubMed  CAS  Google Scholar 

  • Halpain, S.H., Parsons, B. and Rainbow, T.C. (1983). Tritium-film autoradiography of sodium-independent glutamate binding sites in rat brain. Eur. J. Pharmacol., 86, 313–314.

    Article  Google Scholar 

  • Halpaln, S.H., Wieczorek, C.M. and Rainbow, T.C (1984). Localization of L-glutamate receptors in rat brain by quantitative autoradiography. J. Neurosci., 4, 2247–2258.

    Google Scholar 

  • Kim, J.S., Hassler, R., Haug, P. and Paik, K.-S. (1977). Effect of frontal cortex ablation on striatal glutamic acid level in the rat. Brain Res., 132, 370–374.

    Article  PubMed  CAS  Google Scholar 

  • Kuypers, H.G.J.M. (1981). Anatomy of the descending pathways. In Handbook of Physiology: The Nervous System II. (ed. V.B. Brooks). American Physiology Society, Washington, D.C

    Google Scholar 

  • Lynch, G. and Baudry, M. (1984). The biochemistry of memory: A new and specific hypothesis. Science, 224, 1057–1063.

    Article  PubMed  CAS  Google Scholar 

  • McGeer, P.L., McGeer, E.G., Scherer, U. and Singh, K. (1977). A glutamatergic corticostriatal path? Brain Res., 128, 369–373.

    Article  PubMed  CAS  Google Scholar 

  • Monaghan, D.T., Holets, V.R., Toy, D.W. and Cotman, C.W. (1983). Anatomical distributions of four pharmacologically distinct 3H-L-glutamate binding sites. Nature, 306, 176–179.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, C.G. and Porter, R. (1977). Corticospinal Neurones: Their Role in Movement. Academic Press, New York.

    Google Scholar 

  • Shoulson, I. (1984a). Huntington’s disease: Anti-neurotoxic therapeutic strategies. In Excitotoxins. (eds. K. Fuxe, P. Roberts and R. Schwarcz). Plenum Press, New York.

    Google Scholar 

  • Shoulson, I. (1984b). Huntington’s disease: A decade of progress. Neurologic Clin., 2, 515–526.

    CAS  Google Scholar 

  • Stone, T.W. (1979). Amino acids as neurotransmitter of cortico-fugal neurones in the rat: A comparison of glutamate and aspartate. Br. J. Pharmacol., 67, 545–551.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Terry, R.D. and Katzman, R. (1983). Senile dementia of the Alzheimer type. Ann. Neurol., 14, 497–506.

    Article  PubMed  CAS  Google Scholar 

  • Thangnipon, W. and Storm-Mathisen, J. (1981). K+-evoked Ca2+-de-pendent release of D-[3H]asparate from terminals of the corticopontine pathway. Neurosci. Lett., 23 181–186.

    Article  PubMed  CAS  Google Scholar 

  • Thangnipon, W., Taxt, T., Brodai, P. and Storm-Mathisen, J. (1983). The cortico-pontine projection: axotomy-induced loss of high affinity L-glutamate and Daspartate uptake, but not of GABA uptake, glutamate decarboxylase or choline acetyltransferase, in the pontine nuclei. Neuroscience, 8, 449–458.

    Article  PubMed  CAS  Google Scholar 

  • Young, A.B., Bromberg, M.B. and Penney Jr., J.B. (1981). Decreased glutamate uptake in subcortical areas deafferented by sensorimotor cortical ablation in the cat. J. Neurosci., 1, 241–249.

    PubMed  CAS  Google Scholar 

  • Young, A.B., Penney, J.B., Dauth, G.W., Bromberg, M.B. and Gilman, S. (1983). Glutamate or aspartate as a possible neurotransmitter of cerebral corticofugal fibers in the monkey. Neurology, 33, 1513–1516.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1986 The Editors and the Contributors

About this chapter

Cite this chapter

Young, A.B., Greenamyre, J.T., Penney, J.B., Bromberg, M.B. (1986). Glutamate Receptors and Glutamate Corticofugal Pathways. In: Roberts, P.J., Storm-Mathisen, J., Bradford, H.F. (eds) Excitatory Amino Acids. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-08479-1_23

Download citation

Publish with us

Policies and ethics