Amino Acids as Excitatory Transmitters in the Retina

  • A. M. López Colomé


The retina is a part of the CNS which only recently has been taken into consideration as a model for studying synaptic mechanisms and their regulation. This organ exhibits characteristics which are experimentally convenient, for in addition to being readily accessible, the retina can be considered as a natural undamaged slice of 300 µ thickness through which substances can easily diffuse and which can be maintained in vitro for lasting periods of time due to its limited dependence on vascular support. Besides, specific cell types can be impaled and the whole retinal activity can be registered in the ERG. Physiologically, retinal response to its natural stimulus, light, can be followed, and biochemically, synaptic endings from different cell populations can be easily isolated as a consequence of its well defined layered organization (Neal and Atterwill, 1974).


Glycine Retina Histamine NMDA Alan 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altschuter, R.A., Monsinger, J.L., Harmison, G.G., Parakkai, M.H. and Wenthold, R.J. (1982) Aspartate aminotransferase-like immunoreacti vity as a marker for aspartate/glutamate in guinea-pig photorecep tors. Nature, 298, 657–659.CrossRefGoogle Scholar
  2. Ayoub, G.S., and Lam, D.M.K. (1984). The release of yaminobutyric acid from horizontal cells of the goldfish (Carassius auratus) retina. J. Physiol., 355, 191–214.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Biziere K. and Coyle J.T. (1979) Localization of receptors for kainic acid on neurons in the innernuclear layer of retina. Neuropharmacology, 18, 409–413.PubMedCrossRefGoogle Scholar
  4. Bolz, J., Wässle, H. and Thier, P. (1984). Pharmacological modulation of ON and OFF ganglion cells in the cat retina. Neuroscience, 12, 875–885.PubMedCrossRefGoogle Scholar
  5. Brandon, C. and Lam, D.M.K. (1983). L-Glutamic acid: A neuro transmit ter candidate for cone photoreceptors in human and rat retinas. Proc. nat. Acad. Sci. USA, 80, 5117–5121.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bruun, A. and Ehinger B. (1974) Uptake of certain possible neurotransmitters into retinal neurones of some mammals. Expl Eye Res. 19, 435–447.CrossRefGoogle Scholar
  7. Cervetto, L. and MacNichol, E.E. (1972) Inactivation of horizontal cells in turtle retina by glutamate and aspartate. Science, 178, 767–768.PubMedCrossRefGoogle Scholar
  8. Cunningham, J.R., Dawson, C. and Neal, M.J. (1983) Evidence for a cholinergic inhibitory feed-back mechanism in the rabbit retina. J. Physiol., 340, 455–468.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Dowling, J.E. (1979) Information processing by local circuits: The vertebrate retina as a model system. In The Neurosciences; Fourth Study Program (eds. P.O. Schmitt and F.G. Worden). MIT Press, Cambridge, MA.Google Scholar
  10. Dowling, J.E. and Ripps H. (1973) Effect of magnesium on horizontal cell activity in the skate retina. Nature, Lond., 242, 101–103.CrossRefGoogle Scholar
  11. Dvorak, D.R. and Morgan, I.G. (1983) Intravitreal kainic acid permanently by eliminates off-pathways from chick retina. Neurosci. Lett, 36, 249–254.PubMedCrossRefGoogle Scholar
  12. Ehinger, B. (1981) (3H)-Daspartate accumulation in the retina of pigeon, guinea pig and rabbit. Expl. Eye Res., 33, 381–391.CrossRefGoogle Scholar
  13. Ehinger, B. and Falck B. (1971) Autoradiography of some suspected neurotransmitter substances: GABA, glycine, glutamic acid, histamine, dopamine and L-DOPA. Brain Res., 33, 157–172.PubMedCrossRefGoogle Scholar
  14. Gerschenfeld, H.M. and Piccolino, M. (1979). Pharmacology of the connections of cones and L-horizontal cells in the vertebrate retina. In The Neurosciences: Fourth Study Program (eds. P.O. Schmit and F.G. Worden). MIT Press, Cambridge, MA.Google Scholar
  15. Hagins, W.A. (1979). Excitation in vertebrate photoreceptos. In The Neurosciences: Fourth Study Program (eds. P.O. Schmitt and F.G. Worden). MIT Press, Cambridge, MA.Google Scholar
  16. Hampton, C.K. and Redburn, D.A. (1983). Autoradiographic analysis of -glutamate, 3H-dopamine, and 3H-GABA accumulation in rabbit retina after kainic acid treatment. J. Neurosci. Res. 9, 239–251.PubMedCrossRefGoogle Scholar
  17. Hampton, C.K., Garcia, C. and Redburn, D.A. (1981) Localization of kainic acid-sensitive cells in mammalian retina. J. Neurosci. Res., 6, 99–111.PubMedCrossRefGoogle Scholar
  18. Höckel, S.H.J, and Müller, W.E. (1982), L-Glutamate receptor binding in bovine retina. Exp. Eye Res., 35, 55–60PubMedCrossRefGoogle Scholar
  19. Ikeda, H. and Sheardown, M.J. (1982) Aspartate may be an excitatory transmitter mediating visual excitation of “sustained” but not “transient” cells in the cat retina: Iontophoretic studies in vivo. Neuroscience, 7, 25–36.PubMedCrossRefGoogle Scholar
  20. Ishida, A.T. and Fain, G.L. (1981) D-aspartate potentiates the effects of L-glutamate on horizontal cells in goldfish. Proc. natn. Acad. Sci. U.S.A. 78, 5890–5894.CrossRefGoogle Scholar
  21. Ishida, A.T., Kaneko, A. and Tachibana, M. (1984) Responses of solitary retinal horizontal cells from Carassius auratus to L-glutamate and related amino acids. J. Physiol. 348, 255–270.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Kaneko, A. and Shimazaki, H. (1976) Synaptic transmission from photo receptors to the second-order neurons in the carp retina. In Neural Principles in vision (eds. F. Zettler and R. Weiler). Springer-Verlag, Berlin.Google Scholar
  23. Kishida, K. and Naka, K.E. (1967) Amino acids and the spikes from the retinal ganglion cells. Science 156, 648–650.PubMedCrossRefGoogle Scholar
  24. Kondo, H. and Toyoda, J.E. (1980). Dual effect of glutamate and aspartate on the on-center bipolar cell in the carp retina. Brain Res., 199 240–243.PubMedCrossRefGoogle Scholar
  25. Lasater, E.M. and Dowling, J.E. (1982) Carp horizontal cells in culture respond selectively to L-glutamate and its agonists. Proc. natn. Acad. Sci. U.S.A. 936–940.Google Scholar
  26. Lasater, E.M., Dowling, J.E. and Ripps, H. (1984) Pharmacological properties of isolated horizontal and bipolar cells from the skate retina. J. Neurosci., 4, 1966–1975.PubMedGoogle Scholar
  27. Lin, C.T., Li, H.Z. and Wu, J.Y. (1983). Immunocytochemical localiza tion of L-glutamate decarboxylase, gamma aminobutyric acid transaminase, cysteine sulfinic acid decarboxylase, aspartate aminotransferase and somatostatin in rat retina. Brain Res., 270, 273–283.PubMedCrossRefGoogle Scholar
  28. López-Colomé, A.M. (1981) High-affinity binding of L-glutamate to chick retinal membranes. Neurochem. Res. 6, 1019–1033.PubMedCrossRefGoogle Scholar
  29. López-Colomé, A.M. and Somohano, F. (1982). Characterization of L-3H- aspartate binding to chick retinal subcellular fractions. Vision Res., 22, 1495–1501.PubMedCrossRefGoogle Scholar
  30. López-Colomé, A.M. and Somohano, F. (1984). Localization of L-glutamate and L-aspartate synaptic receptors in chick retinal neurons. Brain Res., 298, 159–162.PubMedCrossRefGoogle Scholar
  31. Lund-Karlsen, R. (1978) The toxic effect of sodium glutamate and DL-?-amino adipic acid on rat retina: changes in high affinity uptake of putative transmitters. J. Neurochem. 31, 1055–1061.CrossRefGoogle Scholar
  32. Lund-Karlsen, R. and Fonnum, F. (1976) The toxic effect of sodium glutamate on rat retina: Changes in putative transmitters and their corresponding enzymes. J. Neurochem. 27: 1437–1441.CrossRefGoogle Scholar
  33. Marc, R.E. and Lam, D.M.K. (1981) Uptake of aspartic and glutamic acid by photoreceptors in goldfish retina. Proc. natn. Acad. Sci. U.S.A. 78, 7185–7189.CrossRefGoogle Scholar
  34. Miller, A.M. and Schwartz, E.A. (1983). Evidence for the identification of synaptic transmitters released by photoreceptors of the toad retina. J. Physiol., 334, 325–349.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Mitchell, C.K. and Redburn, D.A. (1982). 2-Amino-4-phosphonobutyric acid and N-methyl-D-aspartate differentiate between 3H-glutamate and 3H-aspartate binding sites in bovine retina. Neurosci. Lett., 28, 241–246.PubMedCrossRefGoogle Scholar
  36. Mitchell, C, Hampton, C. and Redburn D. (1981) Localization of receptor and transport sites for glutamate and aspartate in inner plexiform layer of bovine retina. Invest. Ophthal, visual Sci. 20, 215.Google Scholar
  37. Morgan, I.G. and Dvorak, D.R. (1983) Physiologically active kainic acid preferring receptors in vertebrate retina. In Glutamine, Glutamate and GABA in the Central Nervous System, (eds. L. Hertz, E. Kvamme, E.G. McGeer and A. Schousboe). Alan R. Liss, New York.Google Scholar
  38. Morgan, I.G. and Ingham, C.A. (1981) Kainic acid affects both plexiform layers of chicken retina. Neurosci. Lett. 21, 275–280.PubMedCrossRefGoogle Scholar
  39. Murakami, M., Ohtsu K. and Ohtsuka, T. (1972) Effects of chemicals on receptors and horizontal cells in the retina. J. Physiol. Lond. 227, 899–913.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Murakami, M. Ohtsuka T. and Shimasaki H. (1975) Effects of aspartate and glutamate on the bipolar cells of the carp retina. Vision Res. 15, 456–458.PubMedCrossRefGoogle Scholar
  41. Neal, M.J. (1976) Amino acid transmitter substances in the vertebrate retina. Gen. Pharmac.7, 321–332.CrossRefGoogle Scholar
  42. Neal, M.J. and Atterwill C.K. (1974) Isolation of photoreceptor and conventional nerve terminals by subcellular fractionation of rabbit retina. Nature 251, 331–333.PubMedCrossRefGoogle Scholar
  43. Neal, M.J., Collins, G.G. and Massey S.C. (1979) Inhibition of aspartate release from the retina of the anaesthetised rabbit by stimulation with light flashes. Neurosci. Lett. 14, 241–245.PubMedCrossRefGoogle Scholar
  44. Negishi, K., Kato, S., Teranishi, T. and Laufer, M. (1978) Dual actions of some amino acids on spike discharges in the carp retina. Brain Res. 148, 67–84.PubMedCrossRefGoogle Scholar
  45. Olney, J.W. (1969) Glutamate-induced retinal degeneration in neonatal mice. Electron microscopy of acutely evolving lesion. J. Neuropathol. Exp. Neurol., 28, 455–474.PubMedCrossRefGoogle Scholar
  46. Pasantes-Morales, H., Klethi, J. Ledig M. and Mandel P. (1972) Free amino acids of chicken and rat retina. Brain Res., 41, 494–497.PubMedCrossRefGoogle Scholar
  47. Pasantes-Morales, H., Klethi, J., Ledig, M., and Mandel, P. (1973). Influence of light and dark on the free amino acid pattern of the developing chick retina. Brain Res., 57, 59–65.PubMedCrossRefGoogle Scholar
  48. Rowe, J.S. and Ruddock, K.H. (1982a) Depolarization of retinal horizontal cells by excitatory amino acid neurotransmitter agonists Neurosci. Lett. 30, 257–262.Google Scholar
  49. Rowe, J.S. and Ruddock, K.H. (1982b) Hyperpolarization of retinal horizontal cells by excitatory amino acid neurotransmitter antagonists. Neurosci. Lett. 30, 251–256.PubMedCrossRefGoogle Scholar
  50. Saito, T., Kondo, H. and Toyoda, J. (1978) Rod and cone signals in the on-center bipolar cell: their different ionic mechanisms. Vision Res. 18, 591–595.PubMedCrossRefGoogle Scholar
  51. Schwarcz, R. and Coyle, J.T. (1977) Kainic acid: Neurotoxic effects after intraocular injection. Invest. Ophthalmol. Vis. Sci., 16, 141–148.PubMedGoogle Scholar
  52. Schwartz, E.A. (1982) Calcium-independent release of GABA from isolated horizontal cells of the toad retina. J. Physiol., 323, 211–227.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Schwartz, E.A. (1982). Identification and function of synaptic transmitters used in the outer synaptic layer of the toad retina. In Neurotransmitters in the Retina and the Visual Centers (eds A. Kaneko, N. Tsukahara and K. Uchizono). Biomed. Res. Foundation. Tokyo.Google Scholar
  54. Shiells, R.A., Falk, G. and Naghshineh, S. (1981) Action of glutamate and aspartate analogues on rod horizontal and bipolar cells. Nature 294, 592–594.PubMedCrossRefGoogle Scholar
  55. Slaughter M.M. and Miller, R.F. (1981) 2-amino-4-phosphonobutyric acid. A new pharmacological tool for retina research. Science 211, 182–185.PubMedGoogle Scholar
  56. Slaughter, M.M. and Miller, R.F, (1983a). An excitatory amino acid antagonist blocks cone input to sign-conserving second-order retinal neurons. Science, 219, 1230–1232.PubMedCrossRefGoogle Scholar
  57. Slaughter, M.M. and Miller, R.F. (1983b). Bipolar cells in the mud-puppy retina use an excitatory amino acid neurotransmitter. Nature, 303, 537–538.PubMedCrossRefGoogle Scholar
  58. Sterling, P. (1983). Microcircuitry of the cat retina. A rev. Neurosci., 6, 149–185.CrossRefGoogle Scholar
  59. Straschill, M, and Perwein, J. (1973) The effect of iontophoretical-ly applied acetylcholine upon the cat’s retinal ganglion cells. Pflugers Arch. ges. Physiol 339, 289–298.CrossRefGoogle Scholar
  60. Tachibana, M. (1985). Permeability changes induced by L-glutamate in solitary retinal horizontal cells isolated from Carassius auratus. J. Physiol., 358, 153–167.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Tapia, R. and Arias, C. (1982) Selective stimulation of neurotransmitter release from chick retina by kainic and glutamic acids. J, Neurochem. 39, 1169–1178.CrossRefGoogle Scholar
  62. Thomas. N.T. and Redburn, D.A. (1978) Uptake of 14C-aspartic acid and 14C-glutamic acid by retinal synaptosomal fractions. J. Neurochem. 31, 63–68.CrossRefGoogle Scholar
  63. Trifonov, Y.A. (1968) Study of synaptic transmission between photoreceptors and horizontal cells by means of electrical stimulation of the retina. Biofizika 13, 809–817.PubMedGoogle Scholar
  64. Watkins, J.C. and Evans, R.H. (1981) Excitatory amino acid transmitters. Annu. Rev. Pharmacol. Toxicol 21, 165–204.PubMedCrossRefGoogle Scholar
  65. Werblin, F.S. (1979). Integrative pathways in local circuits between slow-potential cells in the retina. In The Neurosciences. Fourth Study Program (eds. P.O. Schmitt and F.G. Worden) MIT Press, Cambridge, MA.Google Scholar
  66. Werman, R. (1966). Criteria for identification of a central nervous system transmitter. Comp. Biochem. Physiol. 18, 745–766.PubMedCrossRefGoogle Scholar
  67. Werman, R. (1966). Criteria for identification of a central nervous system transmitter. Comp. Biochem. Physiol. 18, 745–766. White, R.D. and Neal M.J. (1976) The uptake of L-glutamate by the retina. Brain Res., 1ll, 79–83.CrossRefGoogle Scholar
  68. Wu, S.M. and Dowling, J.E. (1978). L-Aspartate: evidence for a role in cone photoreceptor synaptic transmission in the carp retina. Proc. nat. Acad. Sci., U.S.A., 75, 5205–5209.CrossRefGoogle Scholar
  69. Yazulla, S. (1983) Stimulation of GABA release from retinal horizontal cells by potassium and acidic amino acid agonists. Brain Res., 275, 61–74.PubMedCrossRefGoogle Scholar
  70. Yazulla, S. (1985). Evoked efflux of 3H-GABA from goldfish retina in the dark. Brain Res., 325, 171–180.PubMedCrossRefGoogle Scholar
  71. Yazulla, S. and Kleinschmidt J. (1980) The effects of intraocular injection of kainic acid on the synaptic organization of the goldfish retina. Brain Res. 182, 287–301.PubMedCrossRefGoogle Scholar

Copyright information

© The Editors and the Contributors 1986

Authors and Affiliations

  • A. M. López Colomé

There are no affiliations available

Personalised recommendations