Skip to main content

Mechanisms of Action of Neuromuscular Blocking Drugs

  • Chapter
Mechanisms of Drug Action

Abstract

The term ‘neuromuscular blocking drug’ might logically be regarded as applying to all drugs that interrupt transmission at neuroeffector junctions in any type of muscle (smooth, cardiac, skeletal). In fact, however, common usage restricts the term to drugs acting at junctions in skeletal muscle, and a further restriction confines the term to those drugs that block transmission by combining with acetylcholine receptors on the chemosensitive area of the muscle fibre membrane — i.e. the nicotinic cholinoceptors of the motor endplate. It is in this sense that the term is used in this chapter. Drugs and toxins are known that interrupt neuromuscular transmission by an action on the nerve endings through which acetylcholine synthesis, storage or release is impaired. Important examples are hemicholinium-3, which inhibits acetylcholine synthesis, and the exotoxin of Clostridium botulinum, which interferes with the transmitter release process (for reviews, see Macintosh and Collier, 1976; Bowman, 1980). The compound 2-(4-phenylpiperidino) cyclohexanol (AH 5183) is an example of a substance that impairs transmission probably by interfering with the loading of acetylcholine into its storage vesicles (Marshall, 1970; Anderson et al., 1983). Although of great theoretical interest, and possibly toxicological interest (for example, in the case of C. botulinum toxin), these compounds have no clinical uses; nor do they act selectively at the neuromuscular junction. For these reasons they are not referred to further in this chapter, which is concerned almost exclusively with drugs that selectively block neuromuscular transmission by an action on postjunctional cholinoceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, P. R. (1975). An analysis of the dose response curve at voltage-clamped frog end-plates. Pflügers Arch. Ges. Physiol., 360, 145

    Article  CAS  Google Scholar 

  • Adams, P. R. (1976). Drug blockade of open end-plate channels. J. Physiol., Lond., 260, 531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adams, P. R. and Sakmann, B. (1978). Decamethonium both opens and blocks endplate Channels. Proc. Natl. Acad. Sci. U.S.A., 75, 2994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alkadhi, K., Branisteanu, D. D., Henderson, E. G., Lambert, J. J. and Voile, R. L. (1980). Effects of McN-A-343, a cholinomimetic drug, on endplate currents. Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol., 312, 117

    Article  CAS  Google Scholar 

  • Anderson, D. C., King, S. C. and Parsons, S. M. (1983). Pharmacological characterization of the acetylcholine transport system in purified Torpedo electric organ synaptic vesicles. Molec. Pharmacol., 24, 48

    CAS  Google Scholar 

  • Baird, W. L. M., Bowman, W. C. and Kerr, W. J. (1982). Some actions of Org NC 45 and of edrophonium in the anaesthetized cat and in man. Br. J. Anaesth., 54, 375

    Article  PubMed  CAS  Google Scholar 

  • Ballivet, M., Patrick, J., Lee, J. and Heinemann, S. (1982). Molecular cloning of cDNA coding for the subunit of Torpedo acetylcholine receptor. Proc. Natl. Acad. Sci. U.S.A., 79, 4466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barnard, E. A., Miledi, R. and Sumikawa, K. (1982). Translation of exogenous messenger RNA coding for nicotinic acetylcholine receptors produces functional receptors in Xenopus oocytes. Proc. Roy. Soc. Lond. B, 215, 241

    Article  CAS  Google Scholar 

  • Boheim, G., Hanke, W., Barrantes, F. J., Eibl, H., Sakmann, B., Fels, G. and Maelicke, A. (1981). Agonist-activated ionic channels in acetylcholine receptor reconstituted into planar lipid bilayers. Proc. Natl. Acad. Sci. U.S.A., 78, 3586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bowman, W.C. (1980). Pharmacology of Neuromuscular Function.

    Google Scholar 

  • John Wright, Bristol Bowman, W. C. (1982). Nonrelaxant properties of neuromuscular blocking drugs. Br. J. Anaesth., 54, 147

    Article  Google Scholar 

  • Bowman, W.C. (1983). In Parnham, M. J. and Bruinvels, J. (Eds.), Psycho- and Neuro-Pharmacology, Vol. 1, pp. 106–160. Elsevier, Amsterdam

    Google Scholar 

  • Bowman, W. C. (1985). Neuromuscular junction: recent developments. Europ. J. Anaesthe-siol., 2, 59

    CAS  Google Scholar 

  • Bowman, W. C. Gibb, A. J. and Marshall, I. G. (1984). Is there feedback control of transmitter release at the neuromuscular junction? Semin. Anesth., 3, 275

    CAS  Google Scholar 

  • Brigant, J. L. and Mallart, A. (1982). Presynaptic currents in mouse motor endings. J. Physiol. Lond., 333, 619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown, G. L. (1938). The preparation of the tibialis anterior (cat) for close-arterial injections. J. Physiol., Lond., 92, 22P

    Google Scholar 

  • Burns, B. D. and Paton, W. D.M. (1951). Depolarisation of the motor endplate by deca-methonium and acetylcholine. J. Physiol., Lond., 115, 41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cavallito, C. J. (1980). Quaternary ammonium salts — advances in chemistry and pharmacology since 1960. Arzneimittelforschung, 24, 267

    PubMed  CAS  Google Scholar 

  • Changeux, J.-P. (1979). In Robin, E. D. (Ed.), Claude Bernard and the Internal Environment, pp. 73–95. Marcel Dekker, New York

    Google Scholar 

  • Colquhoun, D. (1975). Mechanisms of drug action at the voluntary muscle endplate. Ann. Rev. Pharmacol., 15, 307

    Article  PubMed  CAS  Google Scholar 

  • Colquhoun, D. (1979). In O’Brien, R. D. (Ed.), The Receptors: A Comprehensive Treatise, pp. 93–142. Plenum Press, New York

    Google Scholar 

  • Colquhoun, D. (1981). How fast do drugs work? Trends Pharmacol. Sci., 2, 212

    Article  CAS  Google Scholar 

  • Colquhoun, D., Dreyer, F. and Sheridan, R.E. (1979). The actions of tubocurarine at the frog neuromuscular junction. J. Physiol., Lond., 293, 247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Colquhoun, D. and Sheridan, R. E. (1981). The modes of action of gallamine. Proc. Roy. Soc. Lond. B, 211, 181

    Article  CAS  Google Scholar 

  • Creese, R. and England, J. M. (1970). Decamethonium in depolarised muscle and the effect of tubocurarine. J. Physiol., Lond., 210, 345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Creese, R. and Mitchell, L. D. (1981). Spontaneous recovery from depolarising drugs in rat diaphragm. J. Physiol., Lond., 313, 173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dale, H. H., Feldberg, W. and Vogt, M. (1936). Release of acetylcholine at voluntary motor nerve endings. J. Physiol., Lond., 86, 353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dodge, F. A. and Rahamimoff, R. (1967). Cooperative action of calcium ions in transmitter release at the neuromuscular junction. J. Physiol., Lond., 193, 419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dreyer, F. (1982). Acetylcholine receptor. Br. J. Anaesth., 54, 115

    Article  PubMed  CAS  Google Scholar 

  • Durant, N. N. and Katz, R. L. (1982). Suxumthonium. Br. J. Anaesth., 54, 195

    Article  PubMed  CAS  Google Scholar 

  • Eldefrawi, A. T., Miller, E. R. and Eldefrawi, M. E. (1982). Binding of depolarising drugs to ionic channel sites of the nicotinic acetylcholine receptor. Biochem. Pharmacol., 31, 1819

    Article  PubMed  CAS  Google Scholar 

  • Fambrough, D. M. (1979). Control of acetylcholine receptors in skeletal muscle. Physiol. Rev., 59, 165

    PubMed  CAS  Google Scholar 

  • Hamill, O. P., Marty, A., Neher, E., Sakmann, B. and Sigworth, F. J. (1981). Improved patch clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflügers Arch. Ges. Physiol., 391, 85

    Article  CAS  Google Scholar 

  • Jenden, D. J. (1955). Effects of drugs upon neuromuscular transmission in the isolated guinea-pig diaphragm. J. Pharmacol. Exp. Ther., 114, 398

    PubMed  CAS  Google Scholar 

  • Jenkinson, D. H. (1960). The antagonism between tubocurarine and substances which depolarise the motor endplate. J. Physiol., Lond., 152, 309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Katz, B. and Miledi, R. (1972). The statistical nature of the acetylcholine potential and its molecular components. J. Physiol., Lond., 224, 665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Katz, B. and Miledi, R. (1978). A re-examination of curare action at the motor endplate. Proc. Roy. Soc. Lond. B, 203, 119

    Article  CAS  Google Scholar 

  • Kharkevich, D. A. and Skoldinov, A. P. (1980). On some principles of interaction of curare-like agents with acetylcholine receptors of skeletal muscles. J. Pharm. Pharmacol., 32, 733

    Article  PubMed  CAS  Google Scholar 

  • Lambert, J. J., Durant, N. N. and Henderson, E. G. (1983). Drug-induced modification of ionic conductance at the neuromuscular junction. Ann. Rev. Pharmacol. Toxicol., 23, 505

    CAS  Google Scholar 

  • Langley, J. N. (1906). Croonian Lecture: On nerve endings and on special excitable substances in cells. Proc. Roy. Soc. B, 78, 170

    Article  CAS  Google Scholar 

  • Langley, J. N. (1907). On the contraction of muscle, chiefly in relation to the presence of ‘receptive’ substances. J. Physiol., Lond., 36, 347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee, C. Y. (1972). Chemistry and pharmacology of polypeptide toxins in snake venoms. Ann. Rev. Pharmacol., 12, 351

    Article  Google Scholar 

  • Macintosh, F. C. and Collier, B. (1976). In Zaimis, E. (Ed.), Handbook of Experimental Pharmacology. Volume 42: Neuromuscular Junction, pp. 99–228. Springer-Verlag, Berlin

    Google Scholar 

  • Marshall, I. G. (1970). Studies on the blocking action of 2-(4-phenyl-piperidino) cyclo-hexanol (AH 51S3). Br. J. Pharmacol., 38, 503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martin-Smith, M. (1971). In Drug Design, Vol. 2, pp. 453–530. Academic Press, New York

    Book  Google Scholar 

  • Merlie, J. P., Isenberg, K., Carlin, B. and Olsen, E.N. (1984). Regulation of synthesis of acetylcholine receptors. Trends Pharmacol. Sci., 5, 377

    CAS  Google Scholar 

  • Milne, R. J. and Byrne, J. H. (1981). Effects of hexamethonium and decamethonium on end-plate current parameters. Molec. Pharmacol., 19, 276

    CAS  Google Scholar 

  • Neher, E. and Sakmann, B. (1976). Single channel currents recorded from membrane of denervated frog muscle fibres. Nature, Lond., 260, 779

    Article  Google Scholar 

  • Neher, E. and Steinbach, J. H. (1978). Local anaesthetics transiently block currents through single acetylcholine receptor channels. J. Physiol., Lond., 277, 153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neher, E. and Stevens, C. F. (1977). Conductance fluctuations and ionic pores in membranes. Ann. Rev. Biophys. Bioengng., 6, 345

    Article  CAS  Google Scholar 

  • Ogden, D. C., Siegelbaum, S. A. and Colquhoun, D. (1981). Block of acetylcholine-activated ion channels by an uncharged local anaesthetic. Nature, Lond., 289, 596

    Article  CAS  Google Scholar 

  • Paton, W. D. M. (1956). Mode of action of neuromuscular blocking agents. Br. J. Anaesth., 28, 470

    Article  PubMed  CAS  Google Scholar 

  • Paton, W. D. M. and Zaimis, E. J. (1952). The methonium compounds. Pharmacol. Rev., 4, 219

    PubMed  CAS  Google Scholar 

  • Patrick, J. and Heinemann, S. (1982). Outstanding problems in acetylcholine receptor structure and regulation. Trends Neurosci., 5, 300

    Article  CAS  Google Scholar 

  • Peper, K., Bradley, R. J. and Dreyer, F. (1982). The acetylcholine receptor at the neuromuscular junction. Physiol. Rev., 62, 1271

    PubMed  CAS  Google Scholar 

  • Rang, H. P. (1981). Drugs and ionic channels: mechanisms and implications. Postgrad. Med. J., 57(Suppl. 1), 89

    Article  PubMed  CAS  Google Scholar 

  • Sakmann, B., Patlack, J. and Neher, E. (1980). Single acetylcholine-activated channels show burst kinetics in presence of desensitizing concentrations of agonist. Nature, Lond., 286, 71

    Article  CAS  Google Scholar 

  • Stenlake, J. B. (1981). In Wolff, M. E. (Ed.), Burger’s Medicinal Chemistry, 4th edn, Part III, pp. 431–466. Wiley, New York

    Google Scholar 

  • Sumikawa, K., Houghton, M., Emtage, J. S., Richards, B. M. and Barnard, E. A. (1981). Active multi-subunit ACh receptor assembled by translation of heterologous mRNA in Xenopus oocytes. Nature, Lond., 292, 862

    Article  CAS  Google Scholar 

  • Sumikawa, K., Houghton, M., Smith, J. C., Bell, L., Richards, B. M. and Barnard, E. A. (1982). The molecular cloning and characterisation of cDNA coding for the subunit of the acetylcholine receptor. Nucleic Acids Res., 10, 5809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tauc, L. (1979). Are vesicles necessary for release of acetylcholine at cholinergic synapses? Biochem. Pharmacol., 27, 3493

    Article  Google Scholar 

  • Vulpian, A. (1866). Lecons sur la physiologie générale et comparée du système nerveux faites au Muséum d’Histoire. Naturelle, Baillière, Paris

    Google Scholar 

  • Waud, B. E. and Waud, D. R. (1975). In Katz, R. L. (Ed.), Muscle Relaxants, Vol. 3, Monographs in Anaesthesiology, pp. 1–58. Excerpta Medica/American Elsevier, Amsterdam

    Google Scholar 

  • Wray, D. (1980). Noise analysis and channels at the postsynaptic membrane of skeletal muscle. Progr. Drug Res., 24, 9

    CAS  Google Scholar 

  • Zaimis, E. (1976). In Zaimis, E. (Ed.), Handbook of Experimental Pharmacology. Volume 42: Neuromuscular Junction, pp. 1–21. Springer-Verlag, Berlin

    Google Scholar 

  • Zaimis, E. (Ed.) (1976). Handbook of Experimental Pharmacology. Volume 42: Neuromuscular Junction. Springer-Verlag, Berlin

    Google Scholar 

  • Zaimis, E. and Head, S. (1976). In Zaimis, E. (Ed.), Handbook of Experimental Pharmacology. Volume 42: Neuromuscular Junction, pp. 365–419. Springer-Verlag, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1986 The Editor and the Contributors

About this chapter

Cite this chapter

Bowman, W.C. (1986). Mechanisms of Action of Neuromuscular Blocking Drugs. In: Woodruff, G.N. (eds) Mechanisms of Drug Action. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-08026-7_2

Download citation

Publish with us

Policies and ethics