Skip to main content

Circadian Feeding Rhythms: Central Mechanisms and Methamphetamine Modulation

  • Chapter
Circadian Rhythms in the Central Nervous System

Abstract

The circadian rhythm of food intake is driven by a putative central pacemaker in the suprachiasmatic nuclei (SCN). Lesions of the SCN abolish circadian rhythms of feeding and drinking as well as the rest-activity cycle (Moore, 1983). The connections from the SCN to the ventromedial hypothalamus (VMH), the “satiety” centre, and to the lateral hypothalamus (LH), the “feeding” centre, appear indispensable to the circadian organisation of ingestive behaviour (see also Rietveld, this volume). Since anticipatory running activity induced by a restricted food regimen persists in SCIM-lesioned rats (Stephan et al., 1979), and maintains certain circadian characteristics, it is considered that weak circadian oscillators, located in the VMH and LH, may persist in the absence of the SCN (Moore, 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Bodman, von, K.(1970). Die Wirkung von Pharmaka auf Kurzzeitschaetzung und circadiane periodik von Saeugetieren. Z. vergl. Physiologie, 68, 276–292.

    Article  Google Scholar 

  • Borbély, A.A. (1982). A two process model of sleep regulation. Human Neurobiol., 1, 195–204.

    Google Scholar 

  • Daan, S., Beersma, D.G.M. and Borbély, A.A. (1984). Timing of human sleep: recovery process gated by a circadian pacemaker. Am. J. Physiol., 246, R161- R178.

    CAS  PubMed  Google Scholar 

  • Davies, J.A-, Ancill, R.J. and Redfern, P.H. (1972). Hallucinogenic drugs and circadian rhythms. In Progress in Brain Research. (eds. P.S. Bradley and R.W. Brimblecombe). Elsevier, Amsterdam, 79–95.

    Google Scholar 

  • Honma, K.I. (1984). Rest- activity cycles in rats: Coupling of two oscillators and its modulations by light and humoral factors. Abstr. 8th Int. Symp., Humoral control of sleep and its evolution. Taniguchi Foundation, Japan, 20–21.

    Google Scholar 

  • Ikeda, Y. and Chiba, Y. (1982). Effects of psychotropics on circadiain motor activity in rats. In Advances in the Biosciences. Toward Chronopharmacology. (eds. R. Takahashi, F. Halberg and C.A. Walker). Pergamon Press, Oxford, 3–10.

    Google Scholar 

  • Kraeuchi, K., Wirz-Justice, A., Morimasa, T., Willener, R. and Feer, H. (1984). Hypothalamic alpha2- and beta-adrenoceptor rhythms are correlated with circadian feeding: Evidence from chronic methamphetamine treatment and withdrawal. Brain Res., 321, 83–90.

    Article  CAS  Google Scholar 

  • Kraeuchi, K., Wirz-Justice, A., Suetterlin-Willener, R. and Feer, H. (1985). Clonidine stimulation of food intake is circadian phase dependent, submitted manuscript.

    Google Scholar 

  • Leibowitz, S.F. (1980). Neurochemical systems of the hypothalamus: Control of feeding and drinking behavior and water— electrolyte excretion. In Handbook of the Hypothalamus, Vol. 1, Part A, Behavioral Studies of the Hypothalamus. (eds. P.J. Morgane and J. Panksepp). Marcel Dekker, Inc., New York, 299–437.

    Google Scholar 

  • Leibowitz, S.F., Jhanwar-Uniyal, M. and Roland, C.R. (1984). Circadian rhythms of circulating corticosterone and alpha2—noradrenergic receptors in discrete hypothaiamic areas of rat brain. Neurosci. Abstr. 10, 294.

    Google Scholar 

  • LeMagnen, J. (1983). Body energy balance and food intake: a neuroendocrine regulatory mechanism. Physiol. Rev., 63, 314–386.

    CAS  Google Scholar 

  • Levitsky, D.A., Strupp. B.J. and Lupoli, J. (1981). Tolerance to anorectic drugs: pharmacological or artifactual. Pharmacol. Biochem. Behav., 14, 661–667.

    Article  CAS  PubMed  Google Scholar 

  • Moore, R.Y. (1983). Organization and function of a central nervous system circadian oscillator: the suprachiasmatic hypothaiamic nucleus. Federation Proc., 42, 2783–2789.

    CAS  Google Scholar 

  • Morimasa, T., Wirz-Justice, A., Kraeuchi, K. and Feer, H. (1982). Chronic methamphetamine phase delays rat circadian rhythms. Abstr. 8th Int. Congr. Int. Soc. Psychoneuroendocrinol., Tuebingen.

    Google Scholar 

  • Morimasa, T., Wirz-Justice, A-, Kraeuchi, K., Arendt, J., Wiliener, R. and Feer, H. (1983). Multiple effects of chronic methamphetamine on circadian organisation. Abstr. 5th Int. Catecholamine Symp., Goteborg.

    Google Scholar 

  • Pittendrigh, C.S. and Caldarola, P.C. (1973). General homeostasis of the frequency of circadian oscillations. Proc. nat. Acad. Sci. USA, 70, 2697–2701.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Richter, C.P. (1965). In Biological Clocks in Medicine and Psychiatry. (ed. C.P. Richter) Charles C. Thomas, Springfield, Illinois.

    Google Scholar 

  • Stephan, F.K., Swann, J.M. and Sisk, CL. (1979). Entrainment of circadian rhythms by feeding schedules in rats with suprachiasmatic lesions Behav. Neural. Biol., 25, 545–554.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1985 The Contributors

About this chapter

Cite this chapter

Wirz-Justice, A., Kraeuchi, K., Morimasa, T., Rietveld, W. (1985). Circadian Feeding Rhythms: Central Mechanisms and Methamphetamine Modulation. In: Redfern, P.H., Campbell, I.C., Davies, J.A., Martin, K.F. (eds) Circadian Rhythms in the Central Nervous System. Satellite Symposia of the IUPHAR 9th International Congress of Pharmacology. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-07837-0_9

Download citation

Publish with us

Policies and ethics