Advertisement

In Vivo Diurnal Variations of 5HT Release in Hypothalamic Nuclei

  • K. F. Martin
  • C. A. Marsden
Part of the Satellite Symposia of the IUPHAR 9th International Congress of Pharmacology book series (SSNIC)

Abstract

Various parameters have been studied for circadian rhythmicity from locomotor activity (Pittendrigh & Daan, 1976), feeding and drinking behaviour (Boulos & Terman, 1979) and nest building behaviour (Possidente et al, 1979) to plasma hormone levels (Mendlewicz et al, 1980), neurotransmitter receptor number (Kafka et al, 1983) and function (Singleton & Marsden, 1981).

Keywords

Circadian Rhythm Suprachiasmatic Nucleus Plasma Hormone Level Carbon Fibre Electrode Nest Building Behaviour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Adams, R.N. and Marsden, C.A. (1982) Electrochemical detection methods for monoamine measurements in vitro and in vivo. In Handbook of Psychppharmacology Vol.15 (Eds L.L.Iversen, S.P. Iversen and S.H.Snyder), pp 1–74, Plennum Press, New York.CrossRefGoogle Scholar
  2. Albrecht, P., Visscher, M.B., Bittner, J.J. and Halberg, F. (1956) Daily changes in 5-hydroxytryptamine concentration in mouse brain. Proc. Soc. Exp. Biol. Med., 92, 703–706CrossRefPubMedGoogle Scholar
  3. Baumann, P.A. and Waldmeier, P.C. (1984) Negative feedback control of serotonin release in vivo: comparison of 5-hydroxyindole acetic acid levels measured by voltammetery in conscious rats and by biochemical techniques. Neurosci., 11, 195–204.CrossRefGoogle Scholar
  4. Boulos, Z. and Terman, M. (1979) Splitting of circadian rhythms in the rat. J.Comp. Physiol., 134, 75–83.CrossRefGoogle Scholar
  5. Brazell, M.P., Routledge, C. and Marsden, C.A. (1984) 5HT1 receptor agonist (RU-24969) decreases 5HT release and metabolism in vivo. I.U.P.H.A.R. 9th Int. Congress of Pharmacology.Google Scholar
  6. Cespuglio, R., Faradji, H., Crespi, F. and Jouvet, M. (1982) Detection by differential pulse voltammetery of 5-hydroxyindolacetic acid in rostral brain areas: Fluctuations occurring during the sleep-waking cycle. 6th Eur. Congr. Sleep Res., Zurich, pp 282–284.Google Scholar
  7. Cespuglio, R., Faradji, H., Hahn, Z. and Jouvet, M. (1984) Voltammetric detection of brain 5-hydroxyindoleamines by means of electrochemically treated carbon fibre electrodes. Chronic recordings for up to one month with movable cerebral electrodes in the sleeping or waking rat. In Measurement of Neurotransmitter Release in vivo (ed. C.A. Marsden), pp 173–191, J.Wiley & Sons Ltd., Chichester.Google Scholar
  8. Crespi, F., Sharp, T., Maidment, N.T. and Marsden, C.A. (1984) Differential pulse voltammetery in vivo — Evidence that uric acid contributes to the indole oxidation peak. Neurosci. Lett. 43, 203–207.CrossRefGoogle Scholar
  9. Faradji, H., Cespuglio, R., and Jouvet, M. (1983) Voltametric measurements of 5-hydroxyindole compounds in the suprachiasmatic nuclei circadian fluctuations. Brain Res., 279, 111–119CrossRefPubMedGoogle Scholar
  10. Green, A.R. and Costain, D.W. (1982) Pharmacology and biochemistry of psychiatric disorders. J. Wiley & Sons Ltd., Chichester.Google Scholar
  11. Hery, F., Rouer, E. and Glowinski, J. (1972) Daily variations of serotonin metabolism in the rat brain. Brain Res., 43, 445–465.CrossRefPubMedGoogle Scholar
  12. Kafka, M.S., Wirz-Justice, A., Naber, D., Moore, R.Y. and Benedito, M.A. (1983) Circadian rhythms in rat brain neurotransmitter receptors. Fed. Proc, 42, 2796–2801.PubMedGoogle Scholar
  13. Marsden, C.A., Maidment, N.T. and Brazell, M.P. (1984) An introduction to in vivo electrochemistry. In Measurement of Neurotransmitter Release in vivo (ed. C.A. Marsden), pp 127–151, John Wiley & Sons Ltd., Chichester.Google Scholar
  14. Marsden, C.A. and Routledge, C. (1984) In vivo measurements of DOPCA, 5HIAA and 5HT in specific brain regions by intracerebral dialysis. Br. J. Pharmac. 82, 268P.Google Scholar
  15. Martin, K.F. and Redfern, P.H. (1982) The effects of clomipramine on the 24 hour variation of 5HT and tryptophan concentrations in the rat brain. Br. J. Pharmac, 76, 288P.Google Scholar
  16. Mendlewicz, J., Van Cauter, E., Linkowski, P., L’Hermite, M. and Robyn, C. (1980) The 24-hour profile of prolactin in depression. Life Sci., 27, 2015–2024.CrossRefPubMedGoogle Scholar
  17. Middlemiss, D.N. (1984) RU 24969 inhibited K+-evoked release of 3H -5HT autoreceptor. 14th C.I.N.P. Congress P-657.Google Scholar
  18. Moore, R.Y. (1983) Organisation and function of a central nervous system circadian oscillator: the suprachiasmatic hypothalamic nuclei. Fed. Proc, 42, 2783–2789.PubMedGoogle Scholar
  19. Morgan, W.W., Yudo, C.A. and Mcfadin, L.S. (1974) Daily rhythmic changes in the content of serotonin and 5-hydroxindole acetic acid in the cerebral cortex of mice. Life Sci. 14, 329–338.CrossRefPubMedGoogle Scholar
  20. Pittendrigh, L.S. and Daan, S. (1976) A functional analysis of circadian pacemakers in nocturnal rodents. V Pacemaker structure: A clock for all seasons. J.Comp. Physiol., 106, 333–335Google Scholar
  21. Ponction, J.L., Cespuglio, R., Gonon, F., Jouvet, M. and Pujol, J-F. (1979) Normal pulse polarography with carbon fibre electrodes for in vitro and in vivo determination of catecholamines. Anal. Chem. 51. 1483–1486CrossRefGoogle Scholar
  22. Possidente, B., Hegman, J.P., O’Rourke, S. and Birnbaum, S. (1979) Control of behavioural circadian rhythms for nesting and wheel running in mice. Physiol. Behav., 23, 1141–1146CrossRefPubMedGoogle Scholar
  23. Quay, W.B. (1968) Differences in circadian rhythms in 5-hydroxytryptamine according to brain region. Am. J. Physiol. 215, 1448–1453PubMedGoogle Scholar
  24. Scheving, L.E., Harrison, W.H., Gordon, P. and Pauly, J.E. (1968) Daily fluctuations (circadian and ultradian) in biogenic amines of the rat brain. Am. J. Physiol., 214, 166–173PubMedGoogle Scholar
  25. Sharp, T., Maidment, N.T., Brazell, M.P., Zetterstrom, T., Ungerstedt, U., Bennet, G.W. and Marsden, CA. (1984) Changes in monoamine metabolites measured by simultaneous in vivo differential pulse voltammetery and intracerebral dialysis. Neurosci., in press.Google Scholar
  26. Singleton, C. and Marsden, C.A. (1981) Circadian variation in the head twitch response produced by 5-methoxy-N, N-dimethyltryptamine and P-chloroamphetamine in the mouse. Psychopharmac. 74, 173–176CrossRefGoogle Scholar
  27. Szafarczyk, A., Ixart, G., Malaval, J., Nouguier-Soule, and Asenmacher, I. (1979) Effects of lesions of the suprachiasmatic nuclei and p-chlorophenylalamine on the circadian rhythms of adrenocorticotrephic hormone and corticosterone in the plasma and on locomotor activity of rats. J.Endocrinol., 83, 1–16CrossRefPubMedGoogle Scholar
  28. Ungerstedt, U. and Pycock, C. (1974) Functional correlates of dopamine neurotransmission. Bull. Schweiz. Akad. Med. Wiss., 30, 44–55PubMedGoogle Scholar
  29. Wehr, T.A., Sack, D., Rosenthal, N., Duncan, W. and Gillin, J.C. (1983) Circadian rhythm disturbances in manic-depressive illness. Fed.Proc. 42, 2809–2814PubMedGoogle Scholar
  30. Wirz-Justice, A., Groos, G.A. and Wehr, T.A. (1982) The neuropharmacology of circadian timekeeping in mammals. In Vertebrate Circadian Systems, Structure and Physiology, pp 183–193, (Eds. J. Aschoff, S. Daan and G.A. Groos) Springer-Verlag, Berlin.CrossRefGoogle Scholar

Copyright information

© The Contributors 1985

Authors and Affiliations

  • K. F. Martin
  • C. A. Marsden

There are no affiliations available

Personalised recommendations