Purines pp 67-73 | Cite as

Processes by which Purines Inhibit Transmitter Release

  • E. M. Silinsky
Part of the Satellite Symposia of the IUPHAR 9th International Congress of Pharmacology book series (SSNIC)


It is the rare neurotransmitter that has remained unscathed by the innuendo that its release is inhibitable by adenosine derivatives. At the motor nerve ending, acetylcholine (ACh) release is depressed by adenosine nucleosides (Ginsborg and Hirst, 1972; Silinsky, 1980, 1981, 1984a) and adenine nucleotides (Ribeiro and Walker, 1975) in a manner consistent with the suggestion that adenosine receptor activation reduces the apparent affinity for Ca ions of a structural component of the secretory apparatus (Silinsky, 1981). The experimental basis for this suggestion and the possible sites in the nerve ending that might be affected by adenosine will be discussed herein.


Adenylate Cyclase Adenosine Receptor Apparent Affinity Docking Protein Adenosine Receptor Agonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Buckle, P.J. and Spence, I. (1982). Naunyn-Schmiedeberg’s Arch. Pharmacol., 319, 13–135.CrossRefGoogle Scholar
  2. Ceccarelli, B. and Hurlbut, W.P. (1980). Physiol. Rev., 69,. 396–441.Google Scholar
  3. Dunwiddie, T.V. (1984). J. Physiol. (London), 350. 545–559.CrossRefGoogle Scholar
  4. Ginsborg, B.L. and Hirst, 6.D.S. (1972). J. Physiol. (London), 224. 629–645.Google Scholar
  5. Gomperts, B.D. (1983). Nature (London), 306. 64–66.Google Scholar
  6. Heuser, J.E. and Miledi, R. (1971). Proc. Roy. Soc. B. (London), 179. 247–260.CrossRefGoogle Scholar
  7. Kharasch, E.D., Mellow, A.M. and Silinsky, E.M. (1981) J. Physiol. (London), 314. 255–263.Google Scholar
  8. Kuba, K., Kato, E., Kumamoto, E., Koketsu, K. and Hirai, K. (1981). Nature (London), 291. 654–656.Google Scholar
  9. Mellow, A.M., Perry, B.D. and Silinsky, E.M. (1982). J. Physiol. (London), 328, 547–562.Google Scholar
  10. Nestler, E.J. and Greengard, P. (1983). Nature (London), 305. 583–588.CrossRefGoogle Scholar
  11. Parnas, H. and Segel, L.A. (1984). J. Theor. Biol., 107. 345–365.Google Scholar
  12. Rasenick, M.M., Stein, P.J. and Bitensky, M.W. (1981). Nature (London), 294. 560–562.Google Scholar
  13. Reichardt, L.F. and Kelly, R.B. (1983). Ann. Rev. Biochem., 52. 871–926.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Ribeiro, J.A., Dominguez, M.L. and Goncalves, M.J. (1979). Arch. Int. Pharmacodyn. Ther., 238. 206–219.Google Scholar
  15. Ribeiro, J.A. and Walker, J. (1975). Brit. J. Pharmacol., 54. 213–218.Google Scholar
  16. Roch, P. and Salamin, A. (1976). Experientia, 32, 1419–1421.Google Scholar
  17. Schulman, H. (1982). In Cyclic Nucleotides I. Handbook of Experimental Pharmacology (eds J.A. Nathanson and J.W. Kebabian). Springer Verlag, Berlin.Google Scholar
  18. Silinsky, E.M. (1978). J. Physiol. (London), 274, 151–157.Google Scholar
  19. Silinsky, E.M. (1980). Brit. J. Pharmacol., 71, 191–194.Google Scholar
  20. Silinsky, E.M. (1981). Brit. J. Pharmacol., 73, 413–429.Google Scholar
  21. Silinsky, E.M. (1984a). J. Physiol. (London), 246, 243–256.CrossRefGoogle Scholar
  22. Silinsky, E.M. (1984b). In Calcium in Biological Systems (eds. R.P. Rubin and J.W. Putney Jr.). Plenum Press, N.Y.Google Scholar
  23. Silinsky, E.M. (1985). Pharmacol. Rev. in press.Google Scholar
  24. Silinsky, E.M. and Ginsborg, B.L. (1983). Nature (London), 305, 327–328.CrossRefGoogle Scholar

Copyright information

© The Contributors 1985

Authors and Affiliations

  • E. M. Silinsky

There are no affiliations available

Personalised recommendations