Skip to main content

Magnesium Ions Exert a Central Role in Integrating Adenosine Receptor Occupancy with the Inhibition of Adenylate Cyclase

  • Chapter
Book cover Purines

Abstract

The adenosine receptors associated with the adipocyte and brain cortex adenylate cyclase are typical of those neurotransmitter receptors that inhibit the enzyme’s activity in numerous tissues (1). This receptor regulates enzyme activity through a GTP regulatory protein complex (Ni) that is distinct from that which mediates stimulation of the enzyme (Ns) (2–7). The GTP regulatory complex modulates enzyme activity via a GTP hydrolytic cycle involving heterotropic interactions with the receptor and catalytic unit (8–13). Considerable progress has recently been made on characterizing the two types of GTP regulatory complex. Both appear to be comprised of at least three subunits, one of which is unique and two that are common to both complexes. The unique subunit associated with N. can be ADP-ribosylated by islet-activating protein (IAP) a toxin elicited by Bordetella pertussis (7,14,15). At present, the most direct evidence that the IAP substrate is a functional component of Ni mediating hormone inhibition is the demonstration of attenuation of hormonal inhibition by IAP and the reversal of this attenuation by the addition of exogenous (non-treated) IAP substrate (14–16). Such evidence clearly supports a role for the IAP substrate in an Ni complex, although it does not exclude the possibility that other subunits might be required for the promotion of hormonal inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Londos, C., Cooper, D.M.F. and Rodbell, M. (1981). Adv. Cyclic. Nucleotide Res. 14, 163–171.

    PubMed  CAS  Google Scholar 

  2. Jakobs, K.H. (1979). Mol. Cell. Endocrinol. 16, 147–156.

    Article  PubMed  CAS  Google Scholar 

  3. Rodbell, M. (1980). Nature 284, 17–22.

    Article  PubMed  CAS  Google Scholar 

  4. Limbird, L.E. (1981). Biochem. J. 195, 1–13.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Cooper, D.M.F. (1982). FEBS Lett. 138, 157–163.

    Article  PubMed  CAS  Google Scholar 

  6. Hildebrandt, J.D., Sekura, R.D., Codina, J., Iyengar, R., Manclark, C.R. and Bimbaumer, L. (1983). Nature 302:706–709.

    Article  PubMed  CAS  Google Scholar 

  7. Gilman, A.G. (1984). Cell 36,577–579.

    Article  PubMed  CAS  Google Scholar 

  8. Cassel, D. and Selinger, Z. (1976). Biochem. Biophys. Acta 452, 538–551.

    Google Scholar 

  9. Ross, E.M. and Gilman, A.G. (1980). Ann. Rev. Biochem. 49, 533–564.

    Google Scholar 

  10. Aktories, K. and Jakobs, K.H. (1981). FEBS Lett. 130, 235–238.

    Article  PubMed  CAS  Google Scholar 

  11. Koski, G. and Klee, W.A. (1981). Proc. Natl. Acad. Sci. USA 78 4185–4189.

    Google Scholar 

  12. Aktories, K., Schultz, G. and Jakobs, K.H. (1982). Mol. Pharmacol. 21, 336–342.

    PubMed  CAS  Google Scholar 

  13. Michel, T. and Lefkowitz, R.J. (1982). J. Biol. Chem. 257, 13557–13563.

    Google Scholar 

  14. Katada, T. and Ui, M. (1982). Proc. Nat! Acad. Sci. USA 79, 3129–3133.

    Google Scholar 

  15. Katada, T. and Ui, M. (1982). J. Biol. Chem. 257, 7210–7216.

    Google Scholar 

  16. Katada, T., Bokoch, G.M., Northup, J.K., Ui, M. and Gilman, A.G. (1984). J. Biol. Chem. 259, 3568–3577.

    Google Scholar 

  17. Brandt, D.R., Asano, T., Pedersen, S.E. and Ross, E.M. (1983). Biochemistry 22, 4357–4362.

    Article  PubMed  CAS  Google Scholar 

  18. Caron, M.G., Cerione, R.A., Benovic, J.L., Strulovici, B., Staniszewski, C., Lefkowitz, R.J., Codina-Salada, J. and Bimbaumer, L., (in press) Adv. Cyclic, Nucleotide Res.

    Google Scholar 

  19. Tsai, B.S. and Lefkowitz, R.J. (1979). Mol. Pharmacol. 61–68.

    Google Scholar 

  20. U’Prichard, D.C. and Snyder, S.H. (1980). J. Neurochem. 34, 385–394.

    Article  PubMed  Google Scholar 

  21. Yeung, S.-M.H. and Green R.D. (1983). J. Biol. Chem. 258, 2334–2339.

    Google Scholar 

  22. Codina,.1, Hildebrandt, J., Iyengar, R., Bimbaumer, L., Sekura, R.D. and Manclark, C.R. (1983). Proc. Natl. Acad. Sci. USA 80, 4276–4280.

    Google Scholar 

  23. Cooper, D.M.F., Schlegel, W., Lin, M.C. and Rodbell, M. (1979). J. Biol. Chem. 254, 8927–8930.

    Google Scholar 

  24. Jakobs, K.H. and Aktories, K. (1981). Biochem. Biophys. Acta. 676, 51–58.

    Google Scholar 

  25. Hoffman, B.B., Yim, S., Tsai, B.S. and Lefkowitz, R.J. (1981). Biochem. Biophys. Res. Commun. 100,724–731.

    Google Scholar 

  26. Bockaert, J., Cantau, B. and Sebben-Perez, M. (in press) Mol. Pharm acol.

    Google Scholar 

  27. Schramm, M. and Naim, E. (1970). J. Biol. Chem. 245, 3225–3231.

    Google Scholar 

  28. Schramm, M. (1976). J. Cyc. Nuc. Res. 2 347–358.

    Google Scholar 

  29. Yeung, S-M. H., Fossom, L.H., Gill, D.L. and Cooper, D.M.F. submitted.

    Google Scholar 

  30. Trost, T. and Schwabe, U. (1981). Mol. Pharrnacot, 19, 228–235.

    Google Scholar 

  31. MlI1son, P.J. and Rodbard, D. (1980). Anal. Biochem. 107, 220–239.

    Google Scholar 

  32. Neer, E.J. (1976). J. BioI. Chern. 249, 6527–6532.

    Google Scholar 

  33. Kilpatrick, B.F. and Caron, M.G. (1983). J. BioI. Chern. 258, 13528–13534.

    Google Scholar 

  34. Lew, J.Y. and Goldstein, M. (1984). J. Neurochem. 42, 1298–1305.

    Google Scholar 

  35. Harmon, J. T., Kempner, E.S. and Kahn, C.R. (1981). J. Biol, Chern. 256, 7719–7722.

    Google Scholar 

  36. Kincaid, R.L., Kempner, E.S., Manganiello, V.C., Osbourne, J.C. and Vaughan, M. (1981). J. arer, Chern. 256, 11351–11355.

    CAS  Google Scholar 

  37. Avissars, S., Amitai, G. and Sokolovsky, M. (1983). Proc. Natl, Acad. Sci. USA 80, 156–159.

    Google Scholar 

  38. Chang, HW. and Bock, E. (1977) Biochemistry 16, 4513–4520

    Article  PubMed  CAS  Google Scholar 

  39. Venter, C. (1984). In: Neurotransmitter Receptors: Mechanisms of Action and Regulation. S. Kito, K. Kuriyama, HI. Yamamura and R.W. Olsen (eds) Plenum Press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1985 The Contributors

About this chapter

Cite this chapter

Yeung, SM.H., Frame, L.T., Venter, J.C., Cooper, D.M.F. (1985). Magnesium Ions Exert a Central Role in Integrating Adenosine Receptor Occupancy with the Inhibition of Adenylate Cyclase. In: Stone, T.W. (eds) Purines. Satellite Symposia of the IUPHAR 9th International Congress of Pharmacology. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-07564-5_21

Download citation

Publish with us

Policies and ethics