Skip to main content

Fuel Combustion Performance

  • Chapter
Book cover Aviation Fuels Technology
  • 47 Accesses

Abstract

The overall process of combustion of fuel for the generation of power by an open-circuit heat engine comprises the metering of the fuel to the combustion chambers, the preparation of the fuel-oxidant mixture, initiation of ignition, propagation and/or stabilisation of the flame, and subsequent emission of the products. The devices or complete systems used for engine fuel metering represent a separate study, and are covered elsewhere. The remaining topics are determined largely by the type of engine and combustion adopted, and are outlined individually in the following sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8.4 References

  1. J. L. Jackson, Spontaneous ignition temperatures of pure hydrocarbons, NACA RM E50J10, 1950

    Google Scholar 

  2. ASTM-D2155–66, Standard method of test for autoignition temperature of liquid petroleum products, American Society for Testing and Materials, Philadelphia, Pennsylvania

    Google Scholar 

  3. W. Lovell, ‘Knock characteristics of hydrocarbons’, Ind. Eng. Chem., Vol. 40, 1948, pp. 2388–438

    Article  Google Scholar 

  4. E. M. Goodger, Hydrocarbon Fuels, Macmillan, London, 1975

    Google Scholar 

  5. W. Houtman, ‘Development of EPA aircraft piston engine emission standards’, Aircraft Piston Engine Exhaust Emission Symposium, Lewis Research Center, Cleveland, NASA CP-2005, September 1976

    Google Scholar 

  6. B. J. Rezy, K. J. Stuckas, J. R. Tucker and J. E. Meyers, Exhaust emissions reduction for intermittent combustion aircraft engines, NASA CR-16794, May 1982

    Google Scholar 

  7. R. Friedman, Aviation turbine fuel properties and their trends, SAE 810850, August 1981

    Book  Google Scholar 

  8. ASTM D3343, Standard method for estimation of hydrogen content of aviation fuels, American Society for Testing and Materials, Philadelphia, Pennsylvania

    Google Scholar 

  9. C. D. Hurley, Hydrogen content correlation for petroleum and nonpetroleum derived hydrocarbon fuels, NGTE M 81029, July 1981

    Google Scholar 

  10. C. C. Gleason, T. L. Oller, M. W. Shayeson and D. W. Bahr, (a) Evaluation of fuel character effects on J79 engine combustion system, AFAPL-TR-79–2015, June 1979, (b) Evaluation of fuel character effects on F101 engine combustion system, AFAPL-TR-79–2018, June 1979

    Google Scholar 

  11. R. M. Schirmer, L. A. McReynolds and J. E. Daley, ‘Radiation from flames in gas turbine combustors’, SAE Trans., Vol. 68, 1960, pp. 554–61

    Google Scholar 

  12. W. G. Dukek, Survey of hydrogen content of Exxon jet fuels, Technical Division J on Aviation Fuels, Phoenix, Arizona, December 1981

    Google Scholar 

  13. J. S. Fear, NASA broad-specification fuels combustion technology program status and description, ASME 80-GT-65

    Google Scholar 

  14. H. F. Butze and A. L. Smith, Effect of fuel properties on performance of a single aircraft turbojet combustor at simulated idle, cruise and take-off conditions, NASA TM 73780, September 1977

    Google Scholar 

  15. R. M. Schirmer and H. T. Quigg, High pressure combustor studies of flame radiation as related to hydrocarbon structure, Phillips Petroleum Company, Research Division Report 3952–65R, May 1965

    Google Scholar 

  16. D. W. Naegeli and C. A. Moses, Effect of fuel molecular structure on soot formation in gas turbine engines, ASME 80-GT-62

    Google Scholar 

  17. E. Zahavi, B. Gas-Orr and A. Burcat, ‘Effect of future jet fuel characteristics on adiabatic flame temperatures and combustion products distribution’, J. I. Energy, March 1982

    Google Scholar 

  18. J. P. Longwell and J. Grobman, Alternative aircraft fuels, ASME 78-GT-59

    Google Scholar 

  19. D. W. Bahr, Impacts of broadened-specifications fuels on aircraft turbine engine combustors, ASME 81-GT-2

    Google Scholar 

  20. A. B. Wassell, A U.K. view of future fuels, ASME 81-GT-87

    Google Scholar 

  21. A. G. Robertson and R. E. Williams, ‘Jet fuel specifications — the need for change’, Shell Aviation News, No. 435, 1976, pp. 10–13

    Google Scholar 

  22. H. F. Butze and R. C. Ehlers, Effect of fuel properties on performance of a single aircraft turbojet combustor, NASA TM X-71789, October 1975

    Google Scholar 

  23. R. Roberts, A. Peduzzi and G. E. Vitti, Experimental clean combustor program, Phase II, NASA CR-134970, July 1976

    Google Scholar 

  24. E. K. Bastress and R. S. Fletcher, Aircraft engine exhaust emissions, ASME 65-WA/APC-4, November 1969

    Google Scholar 

  25. H. Meier Zu Kocker, ‘Kinetics of soot formation-investigations into the mechanism of soot formation in hydrocarbon diffusion flames, Combustion Science and Technology’, Vol. 5, 1972, pp. 219–24

    Article  Google Scholar 

  26. A. M. Mellor, ‘Gas turbine engine pollution’, Prog. Energy Combust. Sci., Vol. 1, 1976, pp. 111–33

    Article  Google Scholar 

  27. W. S. Blazowski and R. E. Henderson, Aircraft exhaust pollution and its effect on the U.S. Air Force, AFAPL-TR-74–64, August 1974

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 1985 Eric Goodger and Ray Vere

About this chapter

Cite this chapter

Goodger, E., Vere, R. (1985). Fuel Combustion Performance. In: Aviation Fuels Technology. Palgrave, London. https://doi.org/10.1007/978-1-349-06904-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-06904-0_8

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-06906-4

  • Online ISBN: 978-1-349-06904-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics