Advertisement

Radioreceptor assays in toxicology R. F. METCALFE

  • R. F. Metcalfe

Abstract

Neurotransmitters and many other hormones have long been known to produce their physiological effects by binding to specific receptor proteins on cell surface membranes. More recently, many drugs and toxic compounds have been shown to act both selectively and competitively at these same specific receptor sites. However, it is only with the demonstration of specific receptors in tissues for a wide range of drug classes, with the concomitant stimulation of commercial production of appropriate radioligands of high specific activity, that radioreceptor assays have become possible. Thus the existence of specific receptors for opiate analgesics such as morphine was reported (Pert and Snyder, 1973) before the endogenous peptide transmitters at these sites had been discovered. More recently a specific receptor for benzodiazepines has been reported (Möhler and Okada, 1977; Squires and Braestrup, 1977).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaltonen, L., and Scheinin, M. (1982). Application of radioreceptor assay of benzodiazepines for toxicology. Acta Pharmacol. Toxicol. 50, 206–12.CrossRefGoogle Scholar
  2. Akera, T., and Cheng, V.-J. K. (1977). A simple method for the determination of affinity and binding site concentration in receptor binding studies. Biochim. Biophys. Acta 470, 412–23.CrossRefPubMedGoogle Scholar
  3. Barnett, D. B., Cook, N., Dickinson, K. E. J., and Nahorski, S. R. (1982). Radioreceptor assay for beta-adrenoceptor antagonists using solubilised receptor protein. Br. J. Clin. Pharmacol. 13, 284P.Google Scholar
  4. Bennett, J. P., Jun. (1978). In Yamamura, H. I., Enna, S. J., and Kuhar, M. J. (eds), Neurotransmitter Receptor Binding, Raven, New York, 57–90.Google Scholar
  5. Bilezikian, J. P., Gammon, D. E., Rochester, C. L., and Shand, D. G. (1979). A radioreceptor assay for propranolol. Clin. Pharmacol. Therap. 26, 173–80.CrossRefGoogle Scholar
  6. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Analyt. Biochem. 72, 248–54.CrossRefPubMedGoogle Scholar
  7. Braestrup, C., and Squires, R. F. (1978). Pharmacological characterisation of benzodiazepine receptors in the brain. Eur. J. Pharmacol. 48, 263–70.CrossRefPubMedGoogle Scholar
  8. Builder, S. E., and Segel, I. H. (1978). Equilibrium ligand binding assays using labelled substrates: nature of the errors introduced by radiochemical impurities. Analyt. Biochem. 85, 413–24.CrossRefPubMedGoogle Scholar
  9. Burt, D. R., Creese, I., and Snyder, S. H. (1976). Properties of [3H]haloperidol and [3H] dopamine binding associated with dopamine receptors in calf brain membranes. Mol. Pharmacol. 12, 800–12.PubMedGoogle Scholar
  10. Butler, V. P., Jun. (1978). The immunological assay of drugs. Pharmacol. Rev. 29, 103–84.Google Scholar
  11. Cohen, B. M., Herschel, M., and Aoba, A. (1979). Neuroleptic, antimuscarinic, and antiadrenergic activity of chlorpromazine, thioridazine, and their metabolites. Psychiatry Res. 1, 199–208.CrossRefPubMedGoogle Scholar
  12. Colquhoun, D., and Rang, H. P. (1976). Effects of inhibitors on the binding of iodinated α-bungarotoxin to acetylcholine receptors in rat muscle. Mol. Pharmacol. 12, 519–35.PubMedGoogle Scholar
  13. Creese, I. (1978). In Yamamura, H. I., Enna, S. J., and Kuhar, M. J. (eds), Neurotransmitter Receptor Binding, Raven, New York, 141–70.Google Scholar
  14. Creese, I., and Snyder, S. H. (1977). A simple and sensitive radioreceptor assay for antischizophrenic drugs in blood. Nature, Lond. 270, 180–2.CrossRefGoogle Scholar
  15. Creese, I., and Snyder, S. H. (1978). 3H-Spiroperidol labels serotonin receptors in rat cerebral cortex and hippocampus. Eur. J. Pharmacol. 49, 201–2.CrossRefPubMedGoogle Scholar
  16. Creese, I., Burt, D. R., and Snyder, S. H. (1976). Dopamine receptor binding predicts clinical and pharmacological potencies of anti-schizophrenic drugs. Science 192, 481–3.CrossRefPubMedGoogle Scholar
  17. Dorow, R. G., Seidler, J., and Schneider, H. H. (1982). A radioreceptor assay to study the affinity of benzodiazepines and their receptor binding activity in human plasma including their active metabolites. Br. J. Clin. Pharmacol. 13, 561–5.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Garland, W. A., Muccino, R. R., Cupano, J., and Fann, W. E. (1979). A method for the determination of amitriptyline and its metabolites nortriptyline, 10-hydroxy-amitriptyline and 10-hydroxy-nortriptyline in human plasma using stable isotope dilution and gas chromatography-chemical ionisation mass-spectrometry (GC-CIMS). Clin. Pharmacol. Therap. 25, 844–56.CrossRefGoogle Scholar
  19. Hulme, E. C., Birdsall, N. J. M., Burgen, A. S. V., and Mehta, P. (1978). The binding of antagonists to brain muscarinic receptors. Mol. Pharmacol. 14, 737–50.PubMedGoogle Scholar
  20. Hunt, P., Husson, J. M., and Raynaud, J.-P. (1979). A radioreceptor assay for benzodiazepines. J. Pharm. Pharmacol. 31, 448–51.CrossRefPubMedGoogle Scholar
  21. Innis, R. B., and Snyder, S. H. (1981). In Usdin, E. (ed.), Clinical Pharmacology in Psychiatry. Elsevier, New York, 103–20.Google Scholar
  22. Innis, R. B., Bylund, D. B., and Snyder, S. H. (1978). A simple, sensitive and specific radioreceptor assay for β-adrenergic antagonist drugs. Life Sci. 23, 2031–38.CrossRefPubMedGoogle Scholar
  23. Innis, R. B., Tune, L., Rock, R., Depaulo, R., U’Prichard, D. C., and Snyder, S. H. (1979). Tricyclic antidepressant radioreceptor assay. Eur. J. Pharmacol. 58, 473–7.CrossRefPubMedGoogle Scholar
  24. Javaid, J. I., Pandey, G. N., Duslak, B., Hu, H.-Y., and Davis, J. M. (1980). Measurement of neuroleptic concentrations by GLC and radioreceptor assay. Commun. Psychopharm. 4, 467–75.Google Scholar
  25. Jochemsen, R., Horbach, G. J. M. J., and Bremer, D. D. (1982). Assay of nitrazepam and triazolam in plasma by a radioreceptor technique and comparison with a gas chromatographic method. Res. Commun. Chem. Pathol. and Pharmacol. 35, 259–73.Google Scholar
  26. Jorgensen, A. (1975). A gas chromatographic method for the determination of amitriptyline and nortriptyline in human sera. Acta Pharmacol. Toxicol. 36, 79–90.CrossRefGoogle Scholar
  27. Kawashima, K., Levy, A., and Spector, S. (1976). Stereospecific radioimmunoassay for propranolol isomers. J. Pharmac. Exper. Ther. 196, 517–23.Google Scholar
  28. Kelly, J. G., McGarry, K., O’Malley, K. (1981). Radioreceptor assay for labetalol. Br. J. Clin. Pharmacol. 12, 258–60.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Klett, R. P., Fulpius, B. W., Cooper, D., Smith, M., Reich, E., and Possani, L. D. (1973). The acetylcholine receptor. 1: Purification and characterisation of a macromolecule isolated from Electrophorus electricus. J. Biol. Chem. 248, 6841–53.PubMedGoogle Scholar
  30. Kobayashi, Y., and Maudsley, D. V. (1974). Biological Applications of Liquid Scintillation Counting. Academic, New York.Google Scholar
  31. Leysen, J. E., and Gommeren, W. (1982). In vitro binding properties of 3H-Sufentanil, a superior ligand for the µ-opiate receptor. Archs Int. Pharmacodyn. Ther. 260, 287–9.Google Scholar
  32. Linnoila, M., Rosenblatt, J. E., Jeste, D., Skinner, T., Potter, W. Z., and Wyatt, R. J. (1982). Disparate serum thioridazine concentrations: liquid chromatography versus radioreceptor assay. Acta Pharmacol. Toxicol. 50, 25–9.CrossRefGoogle Scholar
  33. Lucek, R., and Dixon, R. (1977). Specific radioimmunoassay for amitriptyline and nortriptyline in plasma. Res. Commun. Chem. Pathol. Pharmacol. 18, 125–36.PubMedGoogle Scholar
  34. Lund, J. (1981). Radioreceptor assay for benzodiazepines in biological fluids using a new, dry and stable receptor preparation. Scand. J. Clin. Lab. Invest. 41, 275–80.CrossRefPubMedGoogle Scholar
  35. May, P. R. A., and Van Putten, T. (1978). Plasma levels of chlorpromazine in schizophrenia. Arch. Gen. Psychiat. 35, 1081–7.CrossRefPubMedGoogle Scholar
  36. Metcalfe, R. F. (1981). A sensitive radioreceptor assay for atropine in plasma. Biochem. Pharmac. 30, 209–12.CrossRefGoogle Scholar
  37. Mohler, H., and Okada, T. (1977). Benzodiazepine receptor: demonstration in the central nervous system. Science 198, 849–51.CrossRefPubMedGoogle Scholar
  38. Möhler, H., and Okada, T. (1978). Biochemical identification of the site of action of benzodiazepines in human brain by 3H-diazepam binding. Life Sci. 22, 985–96.CrossRefPubMedGoogle Scholar
  39. Muir, C., and Metcalfe, R. F. (1983). A comparison of plasma levels of hyoscine after oral and transdermal administration. J. Pharmaceutical and Biomedical Analysis. 1, 363–7.CrossRefGoogle Scholar
  40. Munson, P. J., and Rodbard, D. (1980). LIGAND: a versatile computerised approach for characterisation of ligand-binding systems. Analyt. Biochem. 107, 220–39.CrossRefPubMedGoogle Scholar
  41. Nahorski, S. R., Batta, M. I., and Barnett, D. B. (1978). Measurement of β-adrenoreceptor antagonists in biological fluids using a radioreceptor assay. Eur. J. Pharmacol. 52, 393–6.CrossRefPubMedGoogle Scholar
  42. Nyberg, G., Axelsson, R., and Hartenssen, E. (1978). Binding of thioridazine and thioridazine metabolites to serum proteins in psychiatric patients. Eur. J. Clin. Pharmacol. 14, 341–51.CrossRefPubMedGoogle Scholar
  43. Osselton, M. D., Hammond, M. D., and Twitchett, P. J. (1977). The extraction and analysis of benzodiazepines in tissues by enzymic digestion and high-performance liquid chromatography. J. Pharm. Pharmac. 29, 460–2.CrossRefGoogle Scholar
  44. Parker, C. W. (1981). Radioimmunoassay. Ann. Rev. Pharmacol. Toxicol. 21, 113–32.CrossRefGoogle Scholar
  45. Paul, S. M., Rehavi, M., Hulihan, B., Skolnick, P., and Goodwin, F. K. (1980). A rapid and sensitive radioreceptor assay for tertiary amine tricyclic antidepressants. Commun. Psychopharm. 4, 487–94.Google Scholar
  46. Peng, C.-T. (1977). Sample preparation in liquid scintillation counting. Review 17.Google Scholar
  47. Amersham International, Amersham.Google Scholar
  48. Peng, C.-T., Horrocks, D. L., and Alpen, E. L. (1980). Liquid Scintillation Counting. Recent Applications and Development. Academic, New York.Google Scholar
  49. Pert, C. B., and Snyder, S. H. (1973). Opiate receptor: demonstration in nervous tissue. Science 179, 1011–14.CrossRefPubMedGoogle Scholar
  50. Pert, C. B., and Snyder, S. H. (1974). Opiate receptor binding of agonists and antagonists affected differentially by sodium. Mol. Pharmacol. 10, 868–79.Google Scholar
  51. Raisman, R., Briley, M., and Langer, S. Z. (1979). Specific tricyclic antidepressant binding sites in rat brain. Nature, Lond. 281, 148–50.CrossRefGoogle Scholar
  52. Rehavi, M., Paul, S. M., Skolnick, P., and Goodwin, F. K. (1980). Demonstration of specific high affinity binding sites for [3H] imipramine in human brain. Life Sci. 26, 2273–9.CrossRefPubMedGoogle Scholar
  53. Rehavi, M., Skolnick, P., Hulihan, B., and Paul, S. M. (1981). ‘High Affinity’ binding of [3H] desipramine to rat cerebral cortex: relationship to tricyclic antidepressant-induced inhibition of norepinephrine uptake. Eur. J. Pharmacol. 70, 597–9.CrossRefPubMedGoogle Scholar
  54. Rodbard, D. (1978). Statistical estimation of the minimal detectable concentration (‘sensitivity’) for radioligand assays. Analyt. Biochem. 90, 1–12.CrossRefPubMedGoogle Scholar
  55. Rodbard, D., and Lewald, J. E. (1970). Computer analysis of radioligand assay and radio-immunoassay data. Acta Endocrinol. (suppl.) 64, 79–103.Google Scholar
  56. Sadee, W., Perry, D. C., Rosenbaum, J. S., and Herz, A. (1982). [3H] Diprenorphine receptor binding in vivo and in vitro. Eur. J. Pharmacol. 81, 431–40.CrossRefPubMedGoogle Scholar
  57. Seeman, P., Lee, T., Chou-Wong, M., Wong, K. (1976). Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature, Lond. 261, 717–9.CrossRefGoogle Scholar
  58. Shand, D. G., Nucholls, E. M., and Oates, J. A. (1970). Plasma propranolol levels in adults with observations in four children. Clin. Pharmacol. Ther. 11, 112–20.CrossRefPubMedGoogle Scholar
  59. Shavit, S., Kutz, I., Korczyn, A. D., and Gitter, S. (1980). Interactions between chlorpromazine and some of its metabolites. Commun. Psychopharmacol. 4, 495–500.PubMedGoogle Scholar
  60. Simon, E. J., Hiller, J. M., and Edelman, I. (1973). Stereospecific binding of the potent narcotic analgesic 3H-etorphine to rat brain homogenate. Proc. Natl. Acad. Sci. USA 72, 4376–80.Google Scholar
  61. Sjöqvist, F., and Bertilsson, L. (1981). In Usdin, E. (ed.), Clinical Pharmacology in Psychiatry. Elsevier, New York, pp. 141–153.Google Scholar
  62. Skolnick, P., Goodwin, F. K., and Paul, S. M. (1979). A rapid and sensitive radioreceptor assay for benzodiazepine in plasma. Arch. Gen. Psychiat. 36, 78–80.CrossRefPubMedGoogle Scholar
  63. Snyder, S. H., and Yamamura, H. I. (1977). Antidepressants and the muscarinic acetylcholine receptor. Arch. Gen. Psychiat. 34, 236–9.CrossRefPubMedGoogle Scholar
  64. Snyder, S. H., Pasternak, G. W., and Pert, C. B. (1975). In Iversen, L. L., Iversen, S. D., and Snyder, S. H. (eds), Handbook of Psychopharmacology. Plenum, New York.Google Scholar
  65. Squires, R. F., and Braestrup, C. (1977). Benzodiazepine receptors in rat brain. Nature, Lond. 266, 732–4.CrossRefGoogle Scholar
  66. Stahl, E. (1969). Thin-Layer Chromatography. Springer, Berlin.CrossRefGoogle Scholar
  67. Twitchett, P. H., Fletcher, S. M., Sullivan, A. T., and Moffatt, A. C. (1978). Analysis of LSD in human body fluids by high-performance liquid chromatography, fluorescence spectroscopy and radioimmunoassay. J. Chromatogr. 150, 73–84.CrossRefPubMedGoogle Scholar
  68. Villiger, J. W., Boas, R. A., and Taylor, K. M. (1981). A radioreceptor assay for opiate drugs in human cerebrospinal fluid and plasma. Life Sci. 29, 229–33.CrossRefPubMedGoogle Scholar
  69. Walle, T., Morrison, J., Walle, K., and Conradi, E. (1975). Simultaneous determination of propranolol and 4-hydroxypropranolol in plasma by mass fragmentography. J. Chromatogr. 114, 351–9.CrossRefPubMedGoogle Scholar
  70. Williams, P. L., Moffatt, A. C., and King, L. F. (1978). Combined high pressure liquid chromatography and radioimmunoassay for the quantitation of Δ-9-tetra-hydrocannabinol and some of its metabolites in human plasma. J. Chromatogr. 155, 273–9.CrossRefPubMedGoogle Scholar
  71. Wood, P. L. (1982). Multiple opiate receptors: support for uniqe mu, delta and kappa sites. Neuropharmacology 21, 487–97.CrossRefPubMedGoogle Scholar

Copyright information

© The contributors 1984

Authors and Affiliations

  • R. F. Metcalfe

There are no affiliations available

Personalised recommendations