Skip to main content

Noradrenergic signal transfer as a target of antidepressant therapy

  • Chapter
Frontiers in Neuropsychiatric Research

Abstract

Neurohormones such as norepinephrine (NE), serotonin (5-HT) and dopamine (DA) are, like hormones, informational molecules that transmit specific sets of instructions through specific membrane receptors from the outside to the inside of the cell. While research on the mode of action of antidepressant drugs has centered in the past on their effects on synthesis, release, metabolism, reuptake and hence the availability of neurohormones such as NE or 5-HT at presumptive noradrenergic and/or serotonergic receptor sites, two discoveries made during the second half of the 1970s have shifted the research emphasis on the mode of action of these drugs from acute presynaptic to delayed postsynaptic receptor mediated events. First, Vetulani and Sulser (1975) discovered that various prototypes of antidepressant treatments, including ECT, if administered on a clinically relevant time basis, decreased the neurohormonal sensitivity of the NE receptor-coupled adenylate cyclase system in brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banerjee, S. P., Kung, L. S., Riggi, S. J. and Chanda, S. K. (1977). Development of β-adrenergic receptor subsensitivity by antidepressants. Nature, 268: 455–456

    Article  PubMed  CAS  Google Scholar 

  • Bergstrom, D. A. and Kellar, K. J. (1979). Effect of electroconvulsive shock on monoaminergic receptor binding sites in rat brain. Nature, 278: 464–466

    Article  PubMed  CAS  Google Scholar 

  • Brunello, N., Chuang, D. M. and Costa, E. (1982). Use of specific brain lesions to study the site of action of antidepressants. In S. Langer and B. Briley (eds.) New Vistas in Depression, Adv.Biosch., 40: 141–145

    Google Scholar 

  • Charney, D. S., Menkes, D. B. and Menninger, R. (1981). Receptor sensitivity and the mechanism of action of antidepressant treatment. Arch. Gen. Psychiatry, 38: 1160–1180

    Article  PubMed  CAS  Google Scholar 

  • Cohen, P. (1982). The role of protein phosphorylation in neuronal and hormonal control of cellular activity. Nature, 296: 613–620

    Article  PubMed  CAS  Google Scholar 

  • Crews, F. T., Paul, S. M. and Goodwin, F. K. (1981). Acceleration of β-receptor desensitization by combined administration of antidepressants and phenoxybenzamine. Nature, 290: 787–789

    Article  PubMed  CAS  Google Scholar 

  • Crews, F. T. and Smith, C. B. (1978). Presynaptic alpha-receptor subsensitivity after long-term antidepressant treatment. Science, 202: 322–324

    Google Scholar 

  • Ebstein, R. P., Hermon, M. and Belmaker, R. H. (1980). The effect of lithium on noradrenaline induced cyclic AMP accumulation

    Google Scholar 

  • in rat brain: Inhibition after chronic treatment and absence of supersensitivity. J.Pharmacol.Exp.Ther., 213: 161–167

    Google Scholar 

  • Frazer, A. and Lucki, I. (1982). Antidepressant drugs: Effects on β-adrenergic and serotonergic receptors. In E. Costa and G. Racagni (eds.) Typical and Atypical Antidepressants, Raven Press, New York, pp. 69–90

    Google Scholar 

  • Gillespie, D. D., Manier, D. H. and Sulser, F., (1979). Electroconvulsive treatment: Rapid subsensitivity of the norepinephrine receptor coupled adenylate cyclase system in brain linked to down-regulation of β-adrenergic receptors. Comm. Psychopharmacol., 3: 191–195

    CAS  Google Scholar 

  • Goodwin, F., Prange, A. J., Post, R. M., Muscettola, G. and Lipton, M. A. (1982). L-triiodothyromine converts tricyclic antidepressant non-responders to responders. Am. J. Psychiat., 139: 34–38

    Article  PubMed  CAS  Google Scholar 

  • Greengard, P. (1978). Cyclic nucleotides, phosphorylated proteins and neuronal function. Raven Press, New York, NY.

    Google Scholar 

  • Healy D., Carney, A. P. and Leonard, B. E. (1982). Biochemical markers of depression: (A short review), CINP Congress, Jerusalem.

    Google Scholar 

  • Heritage, A. S., Stumpf, W. E., Sar, M. and Grant, L. D. (1980). Brain stem catecholamine neurons are target sites for sex steroid hormones. Science, 207: 1377–1379

    Article  PubMed  CAS  Google Scholar 

  • Heydorn, W. E., Brunswick, D. J. and Frazer, A. (1982). Effect of treatment of rats with antidepressants on melatonin concentrations in the pineal gland and serum. J.Pharmacol.Exp.Ther., 222: 534–543

    PubMed  CAS  Google Scholar 

  • Homburger, V., Lucas, M., Cantau, B., Barabe, J., Peuit J. and Bockaert, J. (1980). Further evidence that desensitization of β-adrenergic sensitive adenylate cyclase proceeds in two steps. J.Biol.Chem., 255: 10436–10444

    PubMed  CAS  Google Scholar 

  • Janowsky, A. J., Okada, F., Manier, D. H., Applegate, B. O., Steranka, L. and Sulser, F. (1982a). Role of serotonergic input in the regulation of the β-adrenoceptor coupled adenylate cyclase system in brain. Science, 218: 900–901

    Article  PubMed  CAS  Google Scholar 

  • Janowsky, A. J., Steranka, L. R., Gillespie, D. D. and Sulser, F. (1982b). Role of neuronal signal input in the down-regulation of central noradrenergic receptor function by antidepressant drugs. J. Neurochem., 39: 290–292

    Article  PubMed  CAS  Google Scholar 

  • Johnson, R. W., Reisine, T., Spotnitz, S., Wiech, N., Ursillo, R. and Yamamura, H. I. (1980). Effect of desipramine and yohimbine on α2 and β-adrenoreceptor sensitivity. Europ.J.Pharmacol., 67: 123–127

    Article  CAS  Google Scholar 

  • Krebs, E. G. (1972). Protein kinases. Curr.Top.Cell Regul., 5: 99–133

    Google Scholar 

  • Limbird, L. E. (1981). Activation and attenuation of adenylate cyclase. The role of GTP binding proteins as macromolecular messengers. Biochem.J., 195: 1–13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McEwen, B.S., (1979). Steroid hormone interactions with the brain: Cellular and molecular aspects. In D. M. Schneider (ed.), Reviews of Neuroscience, vol. 4, Raven Press, New York, pp. 1–30

    Google Scholar 

  • Minneman, K. P., Dibner, M. D., Wolfe, B. B. and Molinoff, P. B. (1979). β1-and β2-Adrenergic receptors in rat cerebral cortex are independently regulated. Science, 204: 866–868

    Article  PubMed  CAS  Google Scholar 

  • Mishra, R., Leith, N. J., Steranka, L. and Sulser, F. (1981). Role of changes in the availability of serotonin (5HT) in the development of subsensitivity of the norepinephrine receptor coupled adenylate cyclase system in brain. Naunyn-Schmiedeberg’s Arch.Pharmacol., 316: 218–224

    Article  CAS  Google Scholar 

  • Mishra, R., Gillespie, D. D., Lovell, R., Robson, R. D. and Sulser, F. (1982a) Oxaprotiline: Induction of central noradrenergic subsensitivity by its (+) — enantiomer. Life Sci., 30: 1747–1755

    Article  PubMed  CAS  Google Scholar 

  • Mishra, R., Gillespie, D. D., Youdim, M. B. H. and Sulser, F. (1982b). Effect of MAO A and MAO B inhibition in the norepinephrine (NE) receptor coupled adenylate cyclase system in brain. Fed.Proc., 41: 4652

    Google Scholar 

  • Mishra, R. and Sulser, F. (1981). The cylic AMP response to norepinephrine in the limbic forebrain of male and female rats: Effect of desipramine. Biochem.Pharmacol., 30: 3126–3128

    Article  PubMed  CAS  Google Scholar 

  • Mobley, P. L., Manier, D. H. and Sulser, F. (1983). Adrenal steroids affect the norepinephrine sensitive adenylate cyclase system in brain. J.Pharmacol.Expt1.Ther. (in press)

    Google Scholar 

  • Mobley, P. L. and Sulser, F. (1979). Norepinephrine stimulated cyclic AMP accumulation in rat limbic forebrain slices: Partial mediation by a subpopulation of receptors with neither α or β-characteristics. Europ.J.Pharmacol., 60: 221–227

    Article  CAS  Google Scholar 

  • Mobley, P. L. and Sulser, F. (1980). Adrenal corticoids regulate sensitivity of noradrenaline receptor coupled adenylate cyclase in brain. Nature, 286: 608–609

    Article  PubMed  CAS  Google Scholar 

  • Morrison, J. H., Foote, S. L., Molliver, M. E., Bloom, F. E. and Lidov, H. G. W. (1982). Noradrenergic and serotonergic fibers innervate complementary layers in monkey primary visual cortex: An immunohistochemical study. Proc.Natl.Acad.Sci.USA, 79: 2401–2405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okada, F., Manier, D. H., Janowsky, A. J., Steranka, L. R. and Sulser, F. (1982). Role of aminergic neuronal input in the down-regulation by desipramine (DMI) of the norepinephrine (NE) receptor coupled adenylate cyclase system in rat cortex. Soc.Neurosci., 8: 659

    Google Scholar 

  • Pandey, G. N. and Davis, J. M. (1981). Treatment with antidepressants, sensitivity of β-adrenergic receptors and affective illness. In E. Usdin, W. E. Bunney and J. M. Davis (eds.), Neuroreceptors, Basic and Clinical Aspects, New York, pp. 99–120

    Google Scholar 

  • Pandey, G. N., Heinse, W. J., Brown, B. D. and Davis, J. M. (1979). Electroconvulsive shock treatment decreases β-adrenergic receptor sensitivity in rat brain. Nature, 280: 234–235

    Article  PubMed  CAS  Google Scholar 

  • Pastan, I. H. and Willingham, M. C. (1981). Journey to the center of the cell: Role of the receptosome. Science, 214: 504–509

    Article  PubMed  CAS  Google Scholar 

  • Ramsey, T. A. and Mendels, J. (1981). Lithium ion as an antidepressant. In S. J. Enna, J. B. Malick and E. Richelson (eds.), Antidepressants: Neurochemical, Behavioral and Clinical Perspectives, Raven Press, New York, pp. 175–182

    Google Scholar 

  • Reisine, T. B., U’Prichard, D. C., Wiech, N. J., Ursillo, R. C. and Yamamura, H.I. (1980). Effects of combined administration of amphetamine and iprindole on brain adrenergic receptors. Brain Res., 188: 587–592

    Article  PubMed  CAS  Google Scholar 

  • Robinson, S. E., Mobley, P. L., Smith, H. E. and Sulser, F. (1978). Structural and steric requirements of β-phenethylamines as agonists of the noradrenergic cyclic AMP generating system in the rat limbic forebrain. Naunyn-Schmiedeberg’s Arch.Pharmacol., 303: 175–180

    Article  CAS  Google Scholar 

  • Rodbell, M. (1980). The role of hormone receptors and GTP regulatory proteins in membrane transduction. Nature, 284: 17–22

    Article  PubMed  CAS  Google Scholar 

  • Ross, E. M. and Gilman, A. G. (1980). Biochemical properties of hormone-sensitive adenylate cyclase. Ann.Rev.Biochem. 49: 533–564

    Article  PubMed  CAS  Google Scholar 

  • Sar, M. and Stumpf, W. E. (1981). Central noradrenergic neurons concentrate 3H-oestradiol. Nature, 289: 501–502

    Article  Google Scholar 

  • Schmidt, M. J. and Thornberry, J. F. (1977). Norepinephrinestimulated cyclic AMP accumulation in brain slices in vitro after serotonin depletion or chronic administration of selective amine reuptake inhibitors. Arch.Int.Pharmacodyn., 229: 42–51

    PubMed  CAS  Google Scholar 

  • Schweitzer, J. W., Schwartz, R. and Friedhoff, A. J. (1979). Intact presynaptic terminals required for beta-adrenergic receptor regulation by desipramine. J. Neurochem., 33: 377–379

    Article  PubMed  CAS  Google Scholar 

  • Sellinger, M. D., Mendels, J. and Frazer, A. (1980). The effect of psychoactive drugs on β-adrenergic receptor binding sites in rat brain. Neuropharmacology, 19: 447–454

    Article  Google Scholar 

  • Smith, C. B., Garcia-Sevilla, J. A. and Hollingsworth, P. J. (1981). α2-Adrenoreceptors in the rat brain are decreased after long-term tricyclic antidepressant drug treatment. Brain Res., 210: 413–418

    Article  PubMed  CAS  Google Scholar 

  • Spyraki, C. and Fibiger, H. C. (1980). Functional evidence for subsensitivity of noradrenergic alpha2 receptors after chronic desipramine treatment. Life Sci., 27: 1862–1867

    Article  Google Scholar 

  • Su, Y. F., Harden, T. K. and Perkins, J. P. (1980). Catecholamine specific desensitization of adenylate cyclase. J.Biol.Chem., 255: 7410–7419

    PubMed  CAS  Google Scholar 

  • Sugrue, M. F. (1981). Effects of acutely and chronically administered antidepressants on the clonidine-induced decrease in rat brain 3-methoxy-4-hydroxphenyl-ethylene-glycol sulfate content. Life Sci., 28: 377–384

    Article  PubMed  CAS  Google Scholar 

  • Sulser, F. (1978). Functional aspects of the norepinephrine receptor coupled adenylate cyclase system in the limbic forebrain and its modification by drugs which precipitate or alleviate depression: Molecular approaches to our understanding of affective disorders. Pharmakopsychiat., 11: 43–52

    Google Scholar 

  • Sulser, F. (1979). New perspectives on the mode of action of antidepressant drugs. Trends Pharmacol.Sci. 1: 92–94

    Article  CAS  Google Scholar 

  • Sulser, F. (1982). Mode of action of antidepressant drugs. J.Clin.Psychiat., (in press)

    Google Scholar 

  • Sulser, F. and Janowsky, A. (1982). Receptors, receptor sensitivity and receptor regulation in the CNS. In E. Usdin, E. Costa and B. T. Ho (eds.), Serotonin in Biological Psychiatry, Raven Press, New York, pp.144–153

    Google Scholar 

  • Tsukamoto, T., Asakura, M. and Hasegawa, K. (1982), Long-term antidepressant treatment increases α2-adrenergic receptor binding in rat frontal cortex and hippocampus. In S. Z. Langer and M. Briley (eds.), New Vistas in Depression, Pergamon Press, New York, (in press)

    Google Scholar 

  • Ungerstedt, U. (1971). Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol.Scand., 82: suppl. 367, 1–48

    Article  Google Scholar 

  • Vetulani, J., Pik, A. and Nikitin, K. (1980). The effect of chronic imipramine treatment of rats on 3H-clonidine binding in brain. Prog.Neuropsychopharmacol., 12: suppl. 1,349

    Google Scholar 

  • Vetulani, J. and Sulser, F. (1975). Action of various antidepressant treatments reduces reactivity of noradrenergic cyclic AMP generating system in limbic forebrain. Nature, 257: 494–496

    Article  Google Scholar 

  • Wagner, D. A. and Davies, J. N. (1980). Decreased β-adrenergic responses in the female rat brain are eliminated by ovariectomy: correlation of [3H]-dihydroalprenolol binding and catecholamine stimulated cyclic AMP levels. Brain Res., 201: 235–239

    Article  PubMed  CAS  Google Scholar 

  • Walsh, D. A. and Ashby, C. S. (1973). Protein kinase: Aspects of their regulation and diversity. Recent Prog.Horm.Res., 29: 329–359

    PubMed  CAS  Google Scholar 

  • Wolfe, B. B., Harden, T. K., Sporn, J. R. and Molinoff, P. B. (1978). Presynaptic modulation of beta adrenergic receptors in rat cerebral cortex after treatment with antidepressants. J.Pharmacol.Exp.Ther., 207: 446–457

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 1983 The contributors

About this chapter

Cite this chapter

Sulser, F., Okada, F., Manier, D.H., Gillespie, D.D., Janowsky, A., Mishra, R. (1983). Noradrenergic signal transfer as a target of antidepressant therapy. In: Usdin, E., Goldstein, M., Friedhoff, A., Georgotas, A. (eds) Frontiers in Neuropsychiatric Research. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-06689-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-06689-6_1

  • Publisher Name: Palgrave Macmillan, London

  • Print ISBN: 978-1-349-06691-9

  • Online ISBN: 978-1-349-06689-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics