Noradrenergic signal transfer as a target of antidepressant therapy

  • Fridolin Sulser
  • Fumihiko Okada
  • D Hal Manier
  • David D Gillespie
  • Aaron Janowsky
  • Radhakanta Mishra

Abstract

Neurohormones such as norepinephrine (NE), serotonin (5-HT) and dopamine (DA) are, like hormones, informational molecules that transmit specific sets of instructions through specific membrane receptors from the outside to the inside of the cell. While research on the mode of action of antidepressant drugs has centered in the past on their effects on synthesis, release, metabolism, reuptake and hence the availability of neurohormones such as NE or 5-HT at presumptive noradrenergic and/or serotonergic receptor sites, two discoveries made during the second half of the 1970s have shifted the research emphasis on the mode of action of these drugs from acute presynaptic to delayed postsynaptic receptor mediated events. First, Vetulani and Sulser (1975) discovered that various prototypes of antidepressant treatments, including ECT, if administered on a clinically relevant time basis, decreased the neurohormonal sensitivity of the NE receptor-coupled adenylate cyclase system in brain.

Keywords

Lithium Serotonin Cocaine Norepinephrine Catecholamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banerjee, S. P., Kung, L. S., Riggi, S. J. and Chanda, S. K. (1977). Development of β-adrenergic receptor subsensitivity by antidepressants. Nature, 268: 455–456PubMedCrossRefGoogle Scholar
  2. Bergstrom, D. A. and Kellar, K. J. (1979). Effect of electroconvulsive shock on monoaminergic receptor binding sites in rat brain. Nature, 278: 464–466PubMedCrossRefGoogle Scholar
  3. Brunello, N., Chuang, D. M. and Costa, E. (1982). Use of specific brain lesions to study the site of action of antidepressants. In S. Langer and B. Briley (eds.) New Vistas in Depression, Adv.Biosch., 40: 141–145Google Scholar
  4. Charney, D. S., Menkes, D. B. and Menninger, R. (1981). Receptor sensitivity and the mechanism of action of antidepressant treatment. Arch. Gen. Psychiatry, 38: 1160–1180PubMedCrossRefGoogle Scholar
  5. Cohen, P. (1982). The role of protein phosphorylation in neuronal and hormonal control of cellular activity. Nature, 296: 613–620PubMedCrossRefGoogle Scholar
  6. Crews, F. T., Paul, S. M. and Goodwin, F. K. (1981). Acceleration of β-receptor desensitization by combined administration of antidepressants and phenoxybenzamine. Nature, 290: 787–789PubMedCrossRefGoogle Scholar
  7. Crews, F. T. and Smith, C. B. (1978). Presynaptic alpha-receptor subsensitivity after long-term antidepressant treatment. Science, 202: 322–324Google Scholar
  8. Ebstein, R. P., Hermon, M. and Belmaker, R. H. (1980). The effect of lithium on noradrenaline induced cyclic AMP accumulationGoogle Scholar
  9. in rat brain: Inhibition after chronic treatment and absence of supersensitivity. J.Pharmacol.Exp.Ther., 213: 161–167Google Scholar
  10. Frazer, A. and Lucki, I. (1982). Antidepressant drugs: Effects on β-adrenergic and serotonergic receptors. In E. Costa and G. Racagni (eds.) Typical and Atypical Antidepressants, Raven Press, New York, pp. 69–90Google Scholar
  11. Gillespie, D. D., Manier, D. H. and Sulser, F., (1979). Electroconvulsive treatment: Rapid subsensitivity of the norepinephrine receptor coupled adenylate cyclase system in brain linked to down-regulation of β-adrenergic receptors. Comm. Psychopharmacol., 3: 191–195Google Scholar
  12. Goodwin, F., Prange, A. J., Post, R. M., Muscettola, G. and Lipton, M. A. (1982). L-triiodothyromine converts tricyclic antidepressant non-responders to responders. Am. J. Psychiat., 139: 34–38PubMedCrossRefGoogle Scholar
  13. Greengard, P. (1978). Cyclic nucleotides, phosphorylated proteins and neuronal function. Raven Press, New York, NY.Google Scholar
  14. Healy D., Carney, A. P. and Leonard, B. E. (1982). Biochemical markers of depression: (A short review), CINP Congress, Jerusalem.Google Scholar
  15. Heritage, A. S., Stumpf, W. E., Sar, M. and Grant, L. D. (1980). Brain stem catecholamine neurons are target sites for sex steroid hormones. Science, 207: 1377–1379PubMedCrossRefGoogle Scholar
  16. Heydorn, W. E., Brunswick, D. J. and Frazer, A. (1982). Effect of treatment of rats with antidepressants on melatonin concentrations in the pineal gland and serum. J.Pharmacol.Exp.Ther., 222: 534–543PubMedGoogle Scholar
  17. Homburger, V., Lucas, M., Cantau, B., Barabe, J., Peuit J. and Bockaert, J. (1980). Further evidence that desensitization of β-adrenergic sensitive adenylate cyclase proceeds in two steps. J.Biol.Chem., 255: 10436–10444PubMedGoogle Scholar
  18. Janowsky, A. J., Okada, F., Manier, D. H., Applegate, B. O., Steranka, L. and Sulser, F. (1982a). Role of serotonergic input in the regulation of the β-adrenoceptor coupled adenylate cyclase system in brain. Science, 218: 900–901PubMedCrossRefGoogle Scholar
  19. Janowsky, A. J., Steranka, L. R., Gillespie, D. D. and Sulser, F. (1982b). Role of neuronal signal input in the down-regulation of central noradrenergic receptor function by antidepressant drugs. J. Neurochem., 39: 290–292PubMedCrossRefGoogle Scholar
  20. Johnson, R. W., Reisine, T., Spotnitz, S., Wiech, N., Ursillo, R. and Yamamura, H. I. (1980). Effect of desipramine and yohimbine on α2 and β-adrenoreceptor sensitivity. Europ.J.Pharmacol., 67: 123–127CrossRefGoogle Scholar
  21. Krebs, E. G. (1972). Protein kinases. Curr.Top.Cell Regul., 5: 99–133Google Scholar
  22. Limbird, L. E. (1981). Activation and attenuation of adenylate cyclase. The role of GTP binding proteins as macromolecular messengers. Biochem.J., 195: 1–13PubMedPubMedCentralCrossRefGoogle Scholar
  23. McEwen, B.S., (1979). Steroid hormone interactions with the brain: Cellular and molecular aspects. In D. M. Schneider (ed.), Reviews of Neuroscience, vol. 4, Raven Press, New York, pp. 1–30Google Scholar
  24. Minneman, K. P., Dibner, M. D., Wolfe, B. B. and Molinoff, P. B. (1979). β1-and β2-Adrenergic receptors in rat cerebral cortex are independently regulated. Science, 204: 866–868PubMedCrossRefGoogle Scholar
  25. Mishra, R., Leith, N. J., Steranka, L. and Sulser, F. (1981). Role of changes in the availability of serotonin (5HT) in the development of subsensitivity of the norepinephrine receptor coupled adenylate cyclase system in brain. Naunyn-Schmiedeberg’s Arch.Pharmacol., 316: 218–224CrossRefGoogle Scholar
  26. Mishra, R., Gillespie, D. D., Lovell, R., Robson, R. D. and Sulser, F. (1982a) Oxaprotiline: Induction of central noradrenergic subsensitivity by its (+) — enantiomer. Life Sci., 30: 1747–1755PubMedCrossRefGoogle Scholar
  27. Mishra, R., Gillespie, D. D., Youdim, M. B. H. and Sulser, F. (1982b). Effect of MAO A and MAO B inhibition in the norepinephrine (NE) receptor coupled adenylate cyclase system in brain. Fed.Proc., 41: 4652Google Scholar
  28. Mishra, R. and Sulser, F. (1981). The cylic AMP response to norepinephrine in the limbic forebrain of male and female rats: Effect of desipramine. Biochem.Pharmacol., 30: 3126–3128PubMedCrossRefGoogle Scholar
  29. Mobley, P. L., Manier, D. H. and Sulser, F. (1983). Adrenal steroids affect the norepinephrine sensitive adenylate cyclase system in brain. J.Pharmacol.Expt1.Ther. (in press)Google Scholar
  30. Mobley, P. L. and Sulser, F. (1979). Norepinephrine stimulated cyclic AMP accumulation in rat limbic forebrain slices: Partial mediation by a subpopulation of receptors with neither α or β-characteristics. Europ.J.Pharmacol., 60: 221–227CrossRefGoogle Scholar
  31. Mobley, P. L. and Sulser, F. (1980). Adrenal corticoids regulate sensitivity of noradrenaline receptor coupled adenylate cyclase in brain. Nature, 286: 608–609PubMedCrossRefGoogle Scholar
  32. Morrison, J. H., Foote, S. L., Molliver, M. E., Bloom, F. E. and Lidov, H. G. W. (1982). Noradrenergic and serotonergic fibers innervate complementary layers in monkey primary visual cortex: An immunohistochemical study. Proc.Natl.Acad.Sci.USA, 79: 2401–2405PubMedPubMedCentralCrossRefGoogle Scholar
  33. Okada, F., Manier, D. H., Janowsky, A. J., Steranka, L. R. and Sulser, F. (1982). Role of aminergic neuronal input in the down-regulation by desipramine (DMI) of the norepinephrine (NE) receptor coupled adenylate cyclase system in rat cortex. Soc.Neurosci., 8: 659Google Scholar
  34. Pandey, G. N. and Davis, J. M. (1981). Treatment with antidepressants, sensitivity of β-adrenergic receptors and affective illness. In E. Usdin, W. E. Bunney and J. M. Davis (eds.), Neuroreceptors, Basic and Clinical Aspects, New York, pp. 99–120Google Scholar
  35. Pandey, G. N., Heinse, W. J., Brown, B. D. and Davis, J. M. (1979). Electroconvulsive shock treatment decreases β-adrenergic receptor sensitivity in rat brain. Nature, 280: 234–235PubMedCrossRefGoogle Scholar
  36. Pastan, I. H. and Willingham, M. C. (1981). Journey to the center of the cell: Role of the receptosome. Science, 214: 504–509PubMedCrossRefGoogle Scholar
  37. Ramsey, T. A. and Mendels, J. (1981). Lithium ion as an antidepressant. In S. J. Enna, J. B. Malick and E. Richelson (eds.), Antidepressants: Neurochemical, Behavioral and Clinical Perspectives, Raven Press, New York, pp. 175–182Google Scholar
  38. Reisine, T. B., U’Prichard, D. C., Wiech, N. J., Ursillo, R. C. and Yamamura, H.I. (1980). Effects of combined administration of amphetamine and iprindole on brain adrenergic receptors. Brain Res., 188: 587–592PubMedCrossRefGoogle Scholar
  39. Robinson, S. E., Mobley, P. L., Smith, H. E. and Sulser, F. (1978). Structural and steric requirements of β-phenethylamines as agonists of the noradrenergic cyclic AMP generating system in the rat limbic forebrain. Naunyn-Schmiedeberg’s Arch.Pharmacol., 303: 175–180CrossRefGoogle Scholar
  40. Rodbell, M. (1980). The role of hormone receptors and GTP regulatory proteins in membrane transduction. Nature, 284: 17–22PubMedCrossRefGoogle Scholar
  41. Ross, E. M. and Gilman, A. G. (1980). Biochemical properties of hormone-sensitive adenylate cyclase. Ann.Rev.Biochem. 49: 533–564PubMedCrossRefGoogle Scholar
  42. Sar, M. and Stumpf, W. E. (1981). Central noradrenergic neurons concentrate 3H-oestradiol. Nature, 289: 501–502CrossRefGoogle Scholar
  43. Schmidt, M. J. and Thornberry, J. F. (1977). Norepinephrinestimulated cyclic AMP accumulation in brain slices in vitro after serotonin depletion or chronic administration of selective amine reuptake inhibitors. Arch.Int.Pharmacodyn., 229: 42–51PubMedGoogle Scholar
  44. Schweitzer, J. W., Schwartz, R. and Friedhoff, A. J. (1979). Intact presynaptic terminals required for beta-adrenergic receptor regulation by desipramine. J. Neurochem., 33: 377–379PubMedCrossRefGoogle Scholar
  45. Sellinger, M. D., Mendels, J. and Frazer, A. (1980). The effect of psychoactive drugs on β-adrenergic receptor binding sites in rat brain. Neuropharmacology, 19: 447–454CrossRefGoogle Scholar
  46. Smith, C. B., Garcia-Sevilla, J. A. and Hollingsworth, P. J. (1981). α2-Adrenoreceptors in the rat brain are decreased after long-term tricyclic antidepressant drug treatment. Brain Res., 210: 413–418PubMedCrossRefGoogle Scholar
  47. Spyraki, C. and Fibiger, H. C. (1980). Functional evidence for subsensitivity of noradrenergic alpha2 receptors after chronic desipramine treatment. Life Sci., 27: 1862–1867CrossRefGoogle Scholar
  48. Su, Y. F., Harden, T. K. and Perkins, J. P. (1980). Catecholamine specific desensitization of adenylate cyclase. J.Biol.Chem., 255: 7410–7419PubMedGoogle Scholar
  49. Sugrue, M. F. (1981). Effects of acutely and chronically administered antidepressants on the clonidine-induced decrease in rat brain 3-methoxy-4-hydroxphenyl-ethylene-glycol sulfate content. Life Sci., 28: 377–384PubMedCrossRefGoogle Scholar
  50. Sulser, F. (1978). Functional aspects of the norepinephrine receptor coupled adenylate cyclase system in the limbic forebrain and its modification by drugs which precipitate or alleviate depression: Molecular approaches to our understanding of affective disorders. Pharmakopsychiat., 11: 43–52Google Scholar
  51. Sulser, F. (1979). New perspectives on the mode of action of antidepressant drugs. Trends Pharmacol.Sci. 1: 92–94CrossRefGoogle Scholar
  52. Sulser, F. (1982). Mode of action of antidepressant drugs. J.Clin.Psychiat., (in press)Google Scholar
  53. Sulser, F. and Janowsky, A. (1982). Receptors, receptor sensitivity and receptor regulation in the CNS. In E. Usdin, E. Costa and B. T. Ho (eds.), Serotonin in Biological Psychiatry, Raven Press, New York, pp.144–153Google Scholar
  54. Tsukamoto, T., Asakura, M. and Hasegawa, K. (1982), Long-term antidepressant treatment increases α2-adrenergic receptor binding in rat frontal cortex and hippocampus. In S. Z. Langer and M. Briley (eds.), New Vistas in Depression, Pergamon Press, New York, (in press)Google Scholar
  55. Ungerstedt, U. (1971). Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol.Scand., 82: suppl. 367, 1–48CrossRefGoogle Scholar
  56. Vetulani, J., Pik, A. and Nikitin, K. (1980). The effect of chronic imipramine treatment of rats on 3H-clonidine binding in brain. Prog.Neuropsychopharmacol., 12: suppl. 1,349Google Scholar
  57. Vetulani, J. and Sulser, F. (1975). Action of various antidepressant treatments reduces reactivity of noradrenergic cyclic AMP generating system in limbic forebrain. Nature, 257: 494–496CrossRefGoogle Scholar
  58. Wagner, D. A. and Davies, J. N. (1980). Decreased β-adrenergic responses in the female rat brain are eliminated by ovariectomy: correlation of [3H]-dihydroalprenolol binding and catecholamine stimulated cyclic AMP levels. Brain Res., 201: 235–239PubMedCrossRefGoogle Scholar
  59. Walsh, D. A. and Ashby, C. S. (1973). Protein kinase: Aspects of their regulation and diversity. Recent Prog.Horm.Res., 29: 329–359PubMedGoogle Scholar
  60. Wolfe, B. B., Harden, T. K., Sporn, J. R. and Molinoff, P. B. (1978). Presynaptic modulation of beta adrenergic receptors in rat cerebral cortex after treatment with antidepressants. J.Pharmacol.Exp.Ther., 207: 446–457PubMedGoogle Scholar

Copyright information

© The contributors 1983

Authors and Affiliations

  • Fridolin Sulser
    • 1
  • Fumihiko Okada
    • 1
  • D Hal Manier
    • 1
  • David D Gillespie
    • 1
  • Aaron Janowsky
    • 1
  • Radhakanta Mishra
    • 1
  1. 1.Department of PharmacologyVanderbilt University School of Medicine, Tennessee Neuropsychiatric InstituteNashvilleUSA

Personalised recommendations