Advertisement

Fibrinogen and fibrinogen-related peptides in cancer

  • J. J. Franks
  • R. E. Kirsch
  • Betty Kao
  • T. M. Kloppel
Chapter

Abstract

At a previous International Symposium on Plasma Protein Metabolism1 we presented evidence that patients with advanced carcinomas of the lung, pancreas and liver metabolise fibrinogen abnormally. Figure 13.1 shows the overall schema for fibrinogen synthesis, distribution and metabolism which we used to obtain that evidence2. In health, fibrinogen mainly, if not exclusively, follows the pathways described by the core portion of the model, which consists of the plasma and interstitial compartments, fp and fe, the hepatic synthetic apparatus, Sf, synthesising fibrinogen at a rate s, and the fibrinogen transfer and catabolic rate constants, j1, j2 and j3. In pathological states other pathways governed by clotting and/or fibrinolytic enzymes may become important. A fraction of plasma fibrinogen, which in health must be very small, may be transformed into fibrin monomer, F1, at a rate θ1, through the action of thrombin generated in the plasma3. F1, either free or combined with fibrinogen or other proteins, circulates in the plasma and may be degraded by ‘catabolic’ enzymes or plasmin at a rate π3. There is probably an interstitial as well as an intravascular fibrin monomer compartment2, but this is not shown in figure 13.1. Plasmin may also act directly on circulating fibrinogen, converting it to fibrinogen degradation products at a rate π1. Protective enzymes, mainly α2-antiplasmin, keep π1 at a minimum4.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Franks, J. J., Gordon, S. G., Kao, B., Sullivan, T. and Kirch, D. (1976). Increased fibrin formation with tumours and its genesis. In Plasma Protein Turnover (R. Bianchi, G. Mariani and A. S. McFarlane, Eds.), Macmillan, London, p. 423.Google Scholar
  2. 2.
    Reeve, E. B. and Franks, J. J. (1974). Fibrinogen synthesis, distribution and degradation. Semin. Thromb. Hemost., 1, 129.Google Scholar
  3. 3.
    McFarlane, R. G. (1970). The reactions of the blood to injury: I. The reactions of the plasma. In General Pathology (Lord Florey, Ed.), Saunders, Philadelphia, Chapter 7, p. 226.Google Scholar
  4. 4.
    Lijnen, H. R. and Collen, M. D. (1982). Interaction of plasminogen activators and inhibitors with plasminogen and fibrin. Semin. Thromb. Hemost., 8, 2.CrossRefGoogle Scholar
  5. 5.
    Atencio, A. C., Bailey, H. R. and Reeve, E. B. (1965). Studies on the metabolism and distribution of fibrinogen in young and older rabbits I. Methods and models. J. Lab. Clin. Med., 66, 1.Google Scholar
  6. 6.
    Takeda, Y. (1966). Studies of the metabolism and distribution of fibrinogen in healthy men with autologous 125I-labelled fibrinogen. J. Clin. Invest., 45, 103.CrossRefGoogle Scholar
  7. 7.
    Sherman, L. A., Fletcher, A. P. and Sherry, S. (1969). In vivo transformation between fibrinogen of varying ethanol solubilities: A pathway of fibrinogen catabolism. J. Lab. Clin. Med., 73, 574.Google Scholar
  8. 8.
    Catanzaro, A. and Edgington, T. S. (1974). The in vivo behaviour of the terminal derivatives of fibrinogen and fibrin cleaved by plasmin. J. Lab. Clin. Med., 83, 458.Google Scholar
  9. 9.
    Monasterio, G., Becchini, M. F. and Riccioni, N. (1964). Radioiodinated (131I and 125I) fibrinogen for the detection of malignant tumours in man. In Medical Radioisotope Scanning, Vol. II, IAEA, Vienna, p. 159.Google Scholar
  10. 10.
    Riccioni, N., DeRenzi, G., Becchini, M. F. and Bartorelli, A. (1965). The time course of radiofibrinogen uptake in the I.R.E. sarcoma and in acute inflammatory process as induced in rats. Min. Nucl., 9, 250.Google Scholar
  11. 11.
    Riccioni, N., Becchini, M. F., Vitek, F. and Donato, L. Analogue computer study of the kinetics of extravascular distribution of 131I labelled plasma proteins in normal and tumoural tissues. In Labelled Proteins in Tracer Studies (L. Donato, G. Milhaud and J. Sirchis, Eds.), EURATOM 2950, d, f, e, Brussels, p. 193.Google Scholar
  12. 12.
    Murano, G. (1974). The molecular structure of fibrinogen. Semin. Thromb. Hemost., 1, 1.Google Scholar
  13. 13.
    Finlayson, J. S. (1974). Crosslinking of fibrin. Semin. Thromb. Hemost. 1, 33.Google Scholar
  14. 14.
    Marder, V. J., Shulman, N. R. and Carroll, W. R. (1969). High molecular weight derivations of human fibrinogen produced by plasmin. J. Biol. Chem., 244, 2111.Google Scholar
  15. 15.
    Gaffney, P. J. and Brasher, M. (1973). Subunit structure of the plasmininduced degradation products of crosslinked fibrin. Biochim. Biophys. Acta, 295, 308.CrossRefGoogle Scholar
  16. 16.
    Kopec, M., Teisseyre, E., Dudek-Wojciechowska, G., Kloczewiak, M., Pankiewicz, A. and Lattalo, Z. S. (1973). Studies on the ‘double D’ fragment from stabilized bovine fibrin. Thromb. Res., 2, 283.CrossRefGoogle Scholar
  17. 17.
    Pizzo, S. V., Schwaratz, M. L., Hill, R. L. and McKee, P. A. (1973). The effect of plasmin on the subunit structure of human fibrin. J. Biol. Chem., 248, 4574.Google Scholar
  18. 18.
    Sobel, J. H., Koehn, J. A., Friedman, R. and Canfield, R. E. (1982). Alpha chain crosslinking of human fibrin: Purification and radioimmunoassay development for two Aa chain regions involved in crosslinking. Thromb. Res., 26, 411.CrossRefGoogle Scholar
  19. 19.
    Franks, J. J., Kao, B., Purves, L. R. and Kirsch, R. E. Specific RIA of fibrin fragment D-dimer. Clin. Res., 27, 79a.Google Scholar
  20. 20.
    Hyers, T. M., Martin, B. J., Pratt, D. S., Dreisen, R. B. and Franks, J. J. (1980). Thrombin and plasmin activity with exercise in man. J. Appl. Phys., 48, 821.Google Scholar
  21. 21.
    Haynes, B. J., Hyers, T. M., Giclos, P. C., Franks, J. J. and Petty, T. L. (1980). Elevated fibrinogen/fibrin degradation products in the adult respiratory distress syndrome. Am. Rev. Resp. Dis., 122, 841.Google Scholar
  22. 22.
    Snedecor, G. W. and Cochran, W. G. (1980). Statistical Methods, 7th edn, Iowa State University Press, Ames, Iowa.Google Scholar
  23. 23.
    Faden, V. B. and Rodbard, D. (1975). Radioimmunoassay data processing: listing and documentation, ‘logit-log’ method and Scatchard plot. Natl Tech. Inf. Serv., US Dept Comm. Publication PB 246, 223, 1.Google Scholar
  24. 24.
    Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, Lond., 227, 680.CrossRefGoogle Scholar
  25. 25.
    Towbin, H., Stachelin, T. and Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl Acad. Sci. U.S.A., 76, 4350.CrossRefGoogle Scholar
  26. 26.
    Nakane, P. K. and Kawaci, A. (1974). Peroxidase-labelled antibody. A new method of conjugation. J. Histochem. Cytochem., 22, 1084.CrossRefGoogle Scholar
  27. 27.
    Haverkate, F. and Timan, G. (1977). Protective effect of calcium in plasmin degradation of fibrinogen and fibrin fragments D. Thromb. Res., 10, 803.CrossRefGoogle Scholar
  28. 28.
    Purves, L. R., Lindsey, G. G., Brown, G. and Franks, J. J. (1978). Stabilization of the plasmin digestion products of fibrinogen and fibrin by calcium ions. Thromb. Res., 12, 473.CrossRefGoogle Scholar
  29. 29.
    Purves, L. R., Lindsey, G. G. and Franks, J. J. (1978). Role of calcium in the structure and interactions of fibrinogen. S. Afr. J. Sci., 74, 202.Google Scholar
  30. 30.
    Atencio, A. C., Burdick, D. C. and Reeve, E. B. (1965). An accurate isotope dilution method for measuring plasma fibrinogen. J. Lab. Clin. Med., 66, 137.Google Scholar
  31. 31.
    Pizzo, S. V., Taylor, L. M., Jr., Schwartz, M. L., Hill, R. L. and McKee, P. A. (1973). Subunit structure of fragment D from fibrinogen and cross-linked fibrin. J. Biol. Chem., 248, 4584.Google Scholar
  32. 32.
    Nilehn, J.-E. (1967). Split products of fibrinogen after prolonged interaction with plasmin. Thromb. Diath. Haemorrh., 18, 89.Google Scholar
  33. 33.
    van Ruijven-Vermeer, I. A. M., van Irina, A. M., Willem Nieuwenhuizen, W., et al. (1979). A novel method for the rapid purification of human and rat fibrin(ogen) degradation products of high yields. Hoppe-Seyler’s Z. Physiol. Chem., 360, S, 633.CrossRefGoogle Scholar
  34. 34.
    McFarlane, A. S. (1963). In vivo behaviour of I131-fibrinogen. J. Clin. Invest., 42, 346.CrossRefGoogle Scholar
  35. 35.
    Gordon, S. G., Franks, J. J. and Lewis, B. (1975). Cancer procoagulant A: a factor X activating procoagulant from malignant tissue. Thromb. Res., 6, 127.CrossRefGoogle Scholar
  36. 36.
    Gordon, S. G., Franks, J. J. and Lewis, B. J. (1979). Comparison of procoagulant activities in extracts of normal and malignant tissue. J. Natl Cancer Inst., 62, 773.Google Scholar
  37. 37.
    O’Meara, R. A. Q. and Jackson, R. D. (1958). Cytological observations on carcinoma. Irish J. Med. Sci., 391, 327.CrossRefGoogle Scholar
  38. 38.
    Boggust, W. A., O’Meara, R. A. Q. and Thornes, R. D. (1961). The coagulative factors of normal human and cancer tissue. Biochem. J., 80, 32.Google Scholar
  39. 39.
    O’Meara, R. A. Q. and Thornes, R. D. (1961). Some properties of the cancer coagulative factor. Irish J. Med. Sci., 423, 106.CrossRefGoogle Scholar
  40. 40.
    Boggust, W. A., O’Meara, R. A. Q. and Thornes, R. D. (1963). The coagulative factors of normal human and human cancer tissue. Irish J. Med. Sci., 447, 131.CrossRefGoogle Scholar
  41. 41.
    Boggust, W. A., O’Meara, R. A. Q. and Fullerton, W. W. (1968). Diffusible thromboplastins of human cancer and chorion tissue. Eur. J. Cancer, 3, 467.CrossRefGoogle Scholar

Copyright information

© The contributors 1984

Authors and Affiliations

  • J. J. Franks
  • R. E. Kirsch
  • Betty Kao
  • T. M. Kloppel

There are no affiliations available

Personalised recommendations