β-Adrenoceptor agonists enhance the functional activity of brain 5-hydroxytryptamine: relationship to antidepressant activity

  • D. G. Grahame-Smith
  • P. J. Cowen
  • A. R. Green
  • D. J. Heal
  • V. Nimgaonkar


Salbutamol, a β2-adrenoceptor agonist, has been reported to be a clinically effective antidepressant (Jouvent et al., 1977; Lecrubier et al., 1980; Lerer et al., 1981). It has been suggested that salbutamol may be producing its therapeutic effect by an action on brain β-adrenoceptors (Lerer et al., 1981; Kostowski, 1981). The question arises as to how such an action might be translated into an antidepressant effect and whether other β-adrenoceptor agonists might have a neuropharmacological spectrum of activity similar to that of salbutamol.


Electroconvulsive Shock Tryptophan Concentration Plasma Free Fatty Acid Concentration Head Twitch Brain Tryptophan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baraban, J.M. and Aghajanian, G.K. (1981). Noradrenergic innervation of serotonergic neurons in the dorsal raphe: demonstration by electron microscopic autoradiography. Brain Res. 204, 1–11CrossRefPubMedGoogle Scholar
  2. Costain, D.W. and Green, A.R. (1978). β-Adrenoceptor antagonists inhibit the behavioural responses of rats to increased brain 5-hydroxytryptamine. Br. J. Pharmacol., 64, 193–200PubMedCentralCrossRefPubMedGoogle Scholar
  3. Costain, D.W., Green, A.R. and Grahame-Smith, D.G. (1979). Enhanced 5-hydroxytryptamine-mediated behavioural responses in rats following repeated electroconvulsive shock: relevance to the mechanism of the antidepressant effect of electroconvulsive therapy. Psychopharmacology, 61, 167–70CrossRefPubMedGoogle Scholar
  4. Cowen, P.J., Grahame-Smith, D.G., Green, A.R. and Heal, D.J. (1982). β-Adrenoceptor agonists enhance 5-hydroxytryptaminemediated behavioural responses. Br. J. Pharmacol., 76, 265–70PubMedCentralCrossRefPubMedGoogle Scholar
  5. Curzon, G. and Fernando, J.C.R. (1976). Effect of aminophylline on tryptophan and other aromatic amino acids in plasma, brain and other tissues and on brain 5-hydroxytryptamine metabolism. Br. J. Pharmacol., 58, 533–45PubMedCentralCrossRefPubMedGoogle Scholar
  6. Curzon, G. and Green, A.R. (1970). Rapid method for the determination of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in small regions of rat brain. Br. J. Pharmacol., 39, 653–5PubMedCentralCrossRefPubMedGoogle Scholar
  7. Curzon, G., Joseph, M.H. and Knott, P.J. (1972). Effects of immobilization and food deprivation on rat brain tryptophan metabolism. J. Neurochem., 19, 1967–74CrossRefPubMedGoogle Scholar
  8. Day, M.D., Hemsworth, B.A. and Street, J.A. (1977). The central uptake of β-adrenoceptor antagonists. J. Pharm. Pharmacol., 29, 52PCrossRefGoogle Scholar
  9. Deakin, J.F.W. and Green, A.R. (1978). The effects of putative 5-hydroxytryptamine antagonists on the behaviour produced by administration of tranylcypromine and L-tryptophan or tranylcypromine and L-dopa to rats. Br. J. Pharmacol., 64, 201–9PubMedCentralCrossRefPubMedGoogle Scholar
  10. Delini-Stula, A., Vassout, A., Radeke, E. and Ortmann, R. (1979). Psychopharmacological profile of β2-receptor stimulants. Naunyn-Schmiedeberg’s Arch. Pharmacol., 307, R65CrossRefGoogle Scholar
  11. Engelhardt, G. (1976). Pharmakologisches wirkungsprofil von NAB 365 (clenbuterol), einem neuen broncholytikum mit einer selektiven wirkung auf die adrenergen β2-rezeptoren. Arzneim-Forsch., 26, 1404–20Google Scholar
  12. Erdö, S.L., Kiss, B. and Rosdy, B. (1982). Effect of salbutamol on the cerebral levels, uptake and turnover of serotonin. Eur. J. Pharmacol., 78, 357–61CrossRefPubMedGoogle Scholar
  13. Green, A.R. and Deakin, J.F.W. (1980). Brain noradrenaline depletion prevents ECS-induced enhancement of serotonin and dopamine-mediated behaviour. Nature, 285, 232–3CrossRefPubMedGoogle Scholar
  14. Green, A.R. and Grahame-Smith, D.G. (1974). The role of brain dopamine in the hyperactivity syndrome produced in rats after the administration of L-tryptophan and a monoamine oxidase inhibitor. Br. J. Pharmacol., 50, 442–3CrossRefGoogle Scholar
  15. Green, A.R., Hall, J.E. and Rees, A.R. (1981). A behavioural and biochemical study in rats of 5-hydroxytryptamine receptor agonists and antagonists, with observations on structure activity requirements for the agonists. Br. J. Pharmacol., 73, 703–19PubMedCentralCrossRefPubMedGoogle Scholar
  16. Heal, D.J., Green, A.R. and Buylaert, W.A. (1980). Inhibition of apomorphine-, bromocriptine-, and lergotrile-induced circling behaviour in rats by subsequent haloperidol administration. Neuropharmacology, 19, 133–7CrossRefPubMedGoogle Scholar
  17. Jouvent, R., Lecrubier, Y., Pusch, A-J., Frances, H., Simon, P. and Widlöcher, D. (1977). De l’étude expérimentale d’un stimulant bêta-adrénergique á la mise en évidence de son activité antidépressive chez l’homme. Encéphale, 3, 285–93PubMedGoogle Scholar
  18. Kendell, R. (1981). The present status of electroconvulsive therapy. Br. J. Psychiatry, 139, 265–83CrossRefPubMedGoogle Scholar
  19. Kostowski, W. (1981). Brain noradrenaline, depression and antidepressant drugs: facts and hypothesis. Trends Pharmacol. Sci., 2, 314–17CrossRefGoogle Scholar
  20. Lecrubier, Y., Pusch, A-J., Jouvent, R., Simon, P. and Widlöcher, D. (1980). A beta adrenergic stimulant (salbutamol) versus clomipramine in depression: a controlled study. Br. J. Psychiatry, 136, 354–8CrossRefPubMedGoogle Scholar
  21. Lerer, B., Ebstein, R.P. and Belmaker, R.H. (1981). Subsensitivity of human β-adrenergic adenylate cyclase after salbutamol treatment of depression. Psychopharmacology, 75, 169–72CrossRefPubMedGoogle Scholar
  22. Middlemiss, D.N., Blakeborough, L. and Leather, S.R. (1977). Direct evidence for an interaction of β-adrenergic blockers with the 5-HT receptor. Nature, 267, 289–90CrossRefGoogle Scholar
  23. Munro, H.N., Fernstrom, J.D. and Wurtman, R.J. (1975). Insulin, plasma amino acid inbalance, and hepatic coma. Lancet, i, 722–4CrossRefGoogle Scholar
  24. Neff, N.H. and Tozer, T.N. (1968). In vivo measurement of brain serotonin turnover. Adv. Pharmacol., A, 6, 97–109CrossRefPubMedGoogle Scholar
  25. Ortmann, R., Martin, S., Radeke, E. and Delini-Stula, A. (1981). Interation of β-adrenoceptor agonists with the serotonergic system in rat brain. Naunyn-Schmiedeberg’s Arch. Pharmacol., 316, 225–30CrossRefGoogle Scholar
  26. Stolz, J.F. and Marsden, C.A. (1982). Withdrawal from chronic treatment with metergoline, di-propranolol and amitriptyline enhances serotonin receptor mediated behavior in the rat. Eur. J. Pharmacol., 79, 17–22CrossRefPubMedGoogle Scholar
  27. Ungerstedt, J. (1971a). Striatal dopamine release after amphetamine on nerve degeneration revealed by rotational behaviour. Acta Physiol. Scand., 367, Suppl., 49–68CrossRefGoogle Scholar
  28. Ungerstedt, J. (1971b). Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol. Scand., 367, Suppl., 69–93CrossRefGoogle Scholar
  29. Von Kopitar, Z. and Zimmer, A. (1976). Pharmakokinetic und metaboliten muster von clenbuterol bei der ratte. Arzneim-Forsch., 26, 1435–41Google Scholar
  30. Waldmeier, P.C. (1981). Stimulation of central serotonin turnover by β-adrenoceptor agonists. Naunyn-Schmeideberg’s Arch. Pharmacol., 317, 115–19CrossRefGoogle Scholar

Copyright information

© The contributors 1983

Authors and Affiliations

  • D. G. Grahame-Smith
    • 1
  • P. J. Cowen
    • 1
  • A. R. Green
    • 1
  • D. J. Heal
    • 1
  • V. Nimgaonkar
    • 1
  1. 1.MRC Unit and University Department of Clinical PharmacologyUniversity of Oxford, Radcliffe InfirmaryOxfordUK

Personalised recommendations