Fractional Protein Precipitation Using Triazine Dyes

  • J. C. Pearson
Chapter

Abstract

Changes in temperature, pH and ionic strength, or the addition of organic solvents, may precipitate protein from aqueous solution. These effects have been widely used in protein fractionation (Green and Hughes, 1955), and before the introduction of chromatographic methods were virtually the only means of doing so (Kaplan, 1983). Other techniques for effecting protein precipitation include the use of heavy metal ions and ionic polymers. A range of compounds comprising a mixture of aromatic and charged groups are known to promote protein precipitation. Of particular interest for the purposes of the present discussion are those observations of protein precipitation in the presence of organic dyes. Thus, 0.4 per cent rivanol was observed to precipitate albumin, fibrinogen and many other plasma proteins under mildly alkaline (pH 8.0) conditions (Horejsi and Smetana, 1956). Fibrinogen was precipitated from plasma by use of high concentrations of tetrazolium blue (0.5 mg/ml) to yield active protein (Vila et al., 1984). Both these dyes are positively charged aromatic compounds at the pH used. Protein precipitation has also been obtained by use of polysulphonated aromatic compounds, including triazine dyes. Thus, polylysine is quantitatively precipitated from solution upon the addition of Methyl Orange (Itzhaki, 1972), or Trypan Blue (Shen et al., 1984).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertrand, O., Cochet, S., Kroviarski, Y., Truskolaski, A. and Boivin, P. (1985). J. Chromatogr., 346, 111CrossRefGoogle Scholar
  2. Burnett, T. J., Peebles, H. C. and Hageman J. H. (1980). Biochem. Biophys. Res. Commun., 96, 157CrossRefGoogle Scholar
  3. Curling, J. M. (1983). In Curling, J. M. (Ed.), Separation of Plasma Proteins, pp. 5–34, Pharmacia Fine Chemicals AB, Uppsala, SwedenGoogle Scholar
  4. Dunnill, P. (1983). Process. Biochem., 18, 9Google Scholar
  5. Feinstein, A. and Rowe, A. J. (1965). Nature, Lond., 205, 147CrossRefGoogle Scholar
  6. Flygare, S., Griffin, T., Larsson, P.-O. and Mosbach, K. (1983). Analyt. Biochem., 133, 409CrossRefGoogle Scholar
  7. Foster, P. R., Dickson, A. J., Stenhouse, A. and Walker, E. P. (1986). J. Chem. Tech. Biotechnol., 36, 461CrossRefGoogle Scholar
  8. Green, A. A. and Hughes, W. L. (1955). In Colowick, S. P. and Kaplan, N. O. (Eds), Methods in Enzymology, Vol. 1, pp. 67–90, Academic Press, New YorkGoogle Scholar
  9. Green, N. M., Konieczny, L., Toms, E. J. and Valentine, R. C. (1971). Biochem. J., 125, 781CrossRefGoogle Scholar
  10. Hayet, M. and Vijayalakshmi, M. A. (1986). J. Chromatogr., 376, 157CrossRefGoogle Scholar
  11. Horejsi, J. and Smetana, R. (1956). Acta Med. Scand., 155, 65CrossRefGoogle Scholar
  12. Itzhaki, R. F. (1972). Analyt. Biochem., 50, 569CrossRefGoogle Scholar
  13. Jeans, E. R. A., Marshall, P. J. and Lowe, C. R. (1985). Trends Biotechnol., 3, 267CrossRefGoogle Scholar
  14. Kaplan, N. O. (1983) In Chaiken, I. M., Wilchek, M. and Parikh, I. (Eds.), Affinity Chromatography and Biological Recognition, pp. 407–420, Academic Press, LondonCrossRefGoogle Scholar
  15. Larsson, P.-O. and Mosbach, K. (1979). FEBS Lett., 98, 333CrossRefGoogle Scholar
  16. Lowe, C. R. and Pearson, J. C. (1983). In Chaiken, I. M., Wilchek, M. and Parikh, I. (Eds.), Affinity Chromatography and Related Techniques, pp. 421–432, Academic Press, New YorkGoogle Scholar
  17. Pearson, J. C., Burton, S. J. and Lowe, C. R. (1986). Analyt. Biochem., 158, 382CrossRefGoogle Scholar
  18. Shen, W. C., Yang, D. and Ryser, H. J. P. (1984). Analyt. Biochem., 142, 521CrossRefGoogle Scholar
  19. Vila, V., Raganon, E., Llopis, F. and Azanar, J. (1984). Clin. Chim. Acta, 138, 215CrossRefGoogle Scholar

Copyright information

© The contributors 1987

Authors and Affiliations

  • J. C. Pearson

There are no affiliations available

Personalised recommendations