Theoretical and Experimental Analysis of Tube and Hollow Profile Extrusion

  • T. Abildgaard


Extensive use of hollow profiles made of lightweight metals, such as aluminium, in modern product design demands an accelerating development of technology and tooling in extrusion industry. To-day’s design of bridge or spider dies is mainly based on rules-of-thumb. By hollow profile extrusion a plunger speed reduced to only 30 per cent of the comparable solid extrusion speed must be accepted very frequently. The work described in this paper has lead to new understanding of the influence of tooling geometry on welding quality, flow and dead-zone formation. A three-dimensional upper bound analysis describing a piercing-extrusion process for tube manufacture by piercing a cylindrical or ring shaped billet with a conically tapered drift is suggested. Theoretical results are tested by experiments based on the model material technique.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Kovachev et al. (1976), Extrusion of Complex Sections from Electroslag-Refined High Alloy Steels, Steel in the USSR 8, p. 442.Google Scholar
  2. 2.
    M. Markworth and G. Ribbecke (1974), Versuche zur Herstellung von stranggepressten Profilen aus Titanlegierungen auf Leicht- und Schwermetallstrangpressen, Metall 8, p. 777.Google Scholar
  3. 3.
    H. Ll. D. Pugh et al. (1970) Mechanical Behaviour of Materials under Pressure, Elsvier Publishing Company, Ltd., Amsterdam.Google Scholar
  4. 4.
    H. Radtke (1978) Verfahren, Werkzeuge, Wirtschaftlichkeit, Drahtwelt 64, p. 130. Google Scholar
  5. 5.
    Kalle (1973) Industrie-Anzeiger 95, p.42 Google Scholar
  6. 6.
    T. Abildgaard (1981) Ekstruderede hulprofiler, profildesign, produktudvikling og procesteknisk værktøjskonstruktion, Project 1, No. 1, p.25. Google Scholar
  7. 7.
    K. Laue and H. Stenger (1976) Strang-pressen, Aluminium-Verlag GmbH, Düsseldorf.Google Scholar
  8. 8.
    J. GRØNBÆK (ed.) (1979) Modelmaterialeteknik ved Metalbearbejdningen nor-disk behovsundersøgelse, MM-rapport nr. 79.24, AMT-IPU, Lyngby, Danmark.Google Scholar
  9. 9.
    J. Debijl (1975) Metal Forming: Processes and Analysis, McGraw-Hill Book Company, New York.Google Scholar
  10. 11.
    and L. Mitchell (1965), International Journal of Mechanical Science 9, p. 277. CrossRefGoogle Scholar
  11. 12.
    T. Blazynski (1976) Metal FormingTool and Flow, The MacMillan Press Ltd., London.CrossRefGoogle Scholar
  12. 13.
    T. Wanheim, M. P. Schreiber, J. GrØnbÆk and J. Danckert (1979), Physical Modelling of Metal Forming Processes, MM-report No. 79.11, presented on the Conf. on Metal Forming Processes, Chicago.Google Scholar
  13. 14.
    T. Abildgaard (1980) Ekstrudering (2 vol.) MM-rapport nr. 80.01, MM.80.01-B (M.Sc.Thesis).Google Scholar
  14. 15.
    T. Abildgaard (1979) Comparison of experimental achievements as regards determination of strain hardening exponents for composition Indramic-Resin-Kaolin, MM-report nr. 79.08, AMT, Lyngby, Denmark.Google Scholar

Copyright information

© Department of Mechanical Engineering University of Manchester Institute of Science and Technology 1983

Authors and Affiliations

  • T. Abildgaard
    • 1
  1. 1.The Laboratory of Mechanical Processing of Materials Department of Mechanical Technology, AMT.The Technical University of DenmarkDenmark

Personalised recommendations