Advertisement

Side-by-side Models of DNA

  • R. J. Greenall
Part of the Topics in Molecular and Structural Biology book series (TMSB)

Abstract

The lack of a direct solution of the phase problem in fibre diffraction has provided an opportunity for opponents of the double-helix hypothesis to criticise the details of the Watson-Crick model and sometimes to propose alternative conformations. For example, the fibre diffraction evidence for Watson-Crick base-pairs has been a source of considerable debate (Donohue, 1969, 1970; Arnott, 1970; Crick, 1970; Wilkins et al., 1970). Recently attention has been focused on the sugar-phosphate backbone. A number of models of DNA have been described in which the two polynucleotide strands are in side-by-side association rather than entwined in a double-helical structure (Rodley et al., 1976; Sasisekharan and Pattabiraman, 1976, 1978; Bates et al., 1977, 1980a; Sasisekharan et al., 1978; Albiser and Premilat, 1980; Millane and Rodley, 1981; Premilat and Albiser, 1982). In all these side-by-side (SBS) models, the two polynucleotide strands are antiparallel and are linked through complementary base-pairing of the Watson-Crick type. In the SBS models which have been described in most detail, a region of five nucleotide-pairs in a right-handed double-helical conformation similar to that in the Watson-Crick B model is followed by five nucleotide-pairs in a left-handed conformation, which is in turn followed by another right-handed region, and so on throughout the length of the molecule.

Keywords

Bragg Reflection Helix Axis Nucleic Acid Structure Fibre Diffraction Crystalline Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albiser, G. and Premilat, S. (1980). Biochem. Biophys. Res. Commun., 95, 1231CrossRefGoogle Scholar
  2. Arnott, S. (1965). J. Molec. Biol., 12, 76CrossRefGoogle Scholar
  3. Arnott, S. (1970). Science, N.Y., 167, 1694CrossRefGoogle Scholar
  4. Arnott, S. (1973). Trans. Am. Crystallogr. Assoc., 9, 31Google Scholar
  5. Arnott, S. (1979). Nature, Lond., 278, 780CrossRefGoogle Scholar
  6. Arnott, S. (1980). Trends Biochem. Sci., 231Google Scholar
  7. Arnott, S., Chandrasekaran, R., Birdsall, D. L., Leslie, A. G. W. and Ratliff, R. L. (1980). Nature, Lond., 283, 743CrossRefGoogle Scholar
  8. Arnott, S., Chandrasekaran, R., Hukins, D. W. L., Smith, P. J. C and Watts, L. (1974). J. Molec. Biol., 88, 523CrossRefGoogle Scholar
  9. Arnott, S. and Hukins, D. W. L. (1972). Biochem. Biophys. Res. Commun., 47, 1504CrossRefGoogle Scholar
  10. Arnott, S. and Hukins, D. W. L. (1973). J. Molec. Biol., 81, 93CrossRefGoogle Scholar
  11. Arnott, S., Hukins, D. W. L., Dover, S. D., Fuller, W. and Hodgson, A. R. (1973). J. Molec. Biol., 81, 107CrossRefGoogle Scholar
  12. Arnott, S. and Selsing, E. (1974). J. Molec. Biol., 88, 509CrossRefGoogle Scholar
  13. Arnott, S., Wilkins, M. H. F., Fuller, W., Venable, J. H. and Langridge, R. (1967). J. Molec. Biol., 27, 549CrossRefGoogle Scholar
  14. Bates, R. H. T., Lewitt, R. M., Rowe, C. H., Day, J. P. and Rodley, G. A. (1977). J. Proc. Roy. Soc., N. Zealand, 7, 273CrossRefGoogle Scholar
  15. Bates, R. H. T. and McKinnon, G. C. (1978). Research Report, University of Canterbury, New ZealandGoogle Scholar
  16. Bates, R. H. T., McKinnon, G. C., Millane, R. P. and Rodley, G. A. (1980a). Pramana, 14, 233CrossRefGoogle Scholar
  17. Bates, R. H. T., Rodley, G. A. and McKinnon, G. C. (1980b). Nature, Lond., 284, 384CrossRefGoogle Scholar
  18. Cochran, W., Crick, F. H. C. and Vand, V. E. (1952): Acta Crystallogr., 5, 581CrossRefGoogle Scholar
  19. Cooper, P. J. and Hamilton, L. D. (1966). J. Molec. Biol., 16, 562CrossRefGoogle Scholar
  20. Crick, F. H. C. (1970). Science, N.Y., 167, 1694CrossRefGoogle Scholar
  21. Crick, F. H. C. and Klug, A. (1975). Nature, Lond., 255, 530CrossRefGoogle Scholar
  22. Crick, F. H. C., Wang, J. C. and Bauer, W. R. (1979). J. Molec. Biol., 129, 449CrossRefGoogle Scholar
  23. Donohue, J. (1969). Science, N.Y., 165, 1091CrossRefGoogle Scholar
  24. Donohue, J. (1970). Science, N. Y., 167, 1700CrossRefGoogle Scholar
  25. Dover, S. D. (1977). J. Molec. Biol., 110, 699CrossRefGoogle Scholar
  26. Feughelman, M., Langridge, R., Seeds, W. E., Stokes, A. R., Wilson, H. R., Hooper, C. W., Wilkins, M. H. F., Barclay, R. K. and Hamilton, L. D. (1955). Nature, Lond., 175, 834CrossRefGoogle Scholar
  27. Forsyth, V. T., Greenall, R. J., Hussain, R., Mahendrasingam, A., Nave, C., Pigram, W. J. and Fuller, W. (1986). Trans. Biochem. Soc., 14, 553CrossRefGoogle Scholar
  28. Franklin, R. E. and Gosling, R. G. (1953a). Nature, Lond., 171, 156CrossRefGoogle Scholar
  29. Franklin, R. E. and Gosling, R. G. (1953b). Acta Crystallogr., 6, 673CrossRefGoogle Scholar
  30. Franklin, R. E. and Klug, A. (1955). Acta Crystallogr., 8, 777CrossRefGoogle Scholar
  31. Fuller, W. (1961). Ph.D. Thesis, University of LondonGoogle Scholar
  32. Fuller, W., Wilkins, M. H. F., Wilson, H. R. and Hamilton, L. D. (1965). J. Molec. Biol., 12, 60CrossRefGoogle Scholar
  33. Greenall, R. J. (1982). Ph.D. Thesis, University of KeeleGoogle Scholar
  34. Greenall, R. J., Pigram, W. J. and Fuller, W. (1979). Nature, Lond., 282, 880CrossRefGoogle Scholar
  35. James, R. W. (1948). The Crystalline State: Vol. II, The Optical Principles of the Diffraction of X-rays. Bell, LondonGoogle Scholar
  36. Klug, A. and Franklin, R. E. (1958). Disc. Faraday Soc., 25, 104CrossRefGoogle Scholar
  37. Langridge, R., Marvin, D. A., Seeds, W. E., Wilson, H. R., Hooper, C. W., Wilkins, M. H. F. and Hamilton, L. D. (1960a). J. Molec. Biol., 2, 38CrossRefGoogle Scholar
  38. Langridge, R., Wilson, H. R., Hooper, C. W., Wilkins, M. H. F. and Hamilton, L. D. (1960b). J. Molec. Biol., 2, 19CrossRefGoogle Scholar
  39. Leslie, A. G. W., Arnott, S., Chandrasekaran, R. and Ratliff, R. L. (1980). J. Molec. Biol., 143, 49CrossRefGoogle Scholar
  40. Mahendrasingam, A., Forsyth, V. T., Greenall, R. J., Pigram, W. J. and Fuller, W. (1987). In preparationGoogle Scholar
  41. Mahendrasingam, A., Forsyth, V. T., Hussain, R., Greenall, R. J., Pigram, W. J. and Fuller, W. (1986). Science, N.Y., 233, 195CrossRefGoogle Scholar
  42. Marvin, D. A., Spencer, M., Wilkins, M. H. F. and Hamilton, L. D. (1961). J. Molec. Biol., 3, 547CrossRefGoogle Scholar
  43. Millane, R. P. and Rodley, G. A. (1981). Nuc. Acids Res., 9, 1765CrossRefGoogle Scholar
  44. Premilat, S. and Albiser, G. (1982). Biochem. Biophys. Res. Commun., 104, 22CrossRefGoogle Scholar
  45. Rhodes, N. J., Mahendrasingam, A., Pigram, W. J., Fuller, W., Brahms, J., Vergne, J. and Warren, R. A. J. (1982). Nature, Lond., 296, 267CrossRefGoogle Scholar
  46. Rodley, G. A., Scobie, R. S., Bates, R. H. T. and Lewitt, R. M. (1976). Proc. Natl Acad. Sci. U.S.A., 73, 2959CrossRefGoogle Scholar
  47. Sasisekharan, V. and Pattabiraman, N. (1976). Curr. Sci., 45, 779Google Scholar
  48. Sasisekharan, V. and Pattabiraman, N. (1978). Nature, Lond., 275, 159CrossRefGoogle Scholar
  49. Sasisekharan, V., Pattabiraman, N. and Gupta, G. (1978). Proc. Natl Acad. Sci. U.S.A., 75, 4092CrossRefGoogle Scholar
  50. Smith, P. J. C. and Arnott, S. (1978). Acta Crystallogr., A34, 3CrossRefGoogle Scholar
  51. Vainstein, B. K. (1966). Diffraction of X-rays by Chain Molecules. Elsevier, AmsterdamGoogle Scholar
  52. Watson, J. D. (1968). The Double Helix. Athenaeum Press, New YorkGoogle Scholar
  53. Watson, J. D. and Crick, F. H. C. (1953). Nature, Lond., 171, 737CrossRefGoogle Scholar
  54. Wilkins, M. H. F. (1961). J. Chem. Phys., 891Google Scholar
  55. Wilkins, M. H. F., Arnott, S., Marvin, D. A. and Hamilton, L. D. (1970). Science, N.Y., 167, 1693CrossRefGoogle Scholar
  56. Zimmerman, S. B. and Pheiffer, B. H. (1979). Proc. Natl Acad. Sci. U.S.A., 76, 2703CrossRefGoogle Scholar

Copyright information

© The Contributors 1987

Authors and Affiliations

  • R. J. Greenall

There are no affiliations available

Personalised recommendations