Advertisement

Alkyltransferases: Mechanistic studies and mechanism-based specific inhibitors

  • James K Coward

Abstract

This article will present a brief overview of mechanistic studies of reactions at sp3-hybridized carbon, both enzymecatalyzed and related non-enzymic model systems. These mechanistic studies lead to a description of transition state structure for the reactions under investigation, and thus are critical to the design of potent and specific inhibitors of this class of enzymes. The reactions under consideration are shown in eq. 1 and 2.

Keywords

Transition State Structure Methyl Transfer Steric Constraint Sulfonium Salt Sulfonium Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, G. L., Bussolotti, D. L., & Coward, J. K. (1981). Synthesis and Evaluation of Some Stable Multisubstrate Adducts as Inhibitors of Catechol-O-Methyltransferase. J. Med. Chem. 24, 1271–1277.PubMedCrossRefGoogle Scholar
  2. Baldwin, J. E. (1976). Rules for Ring Closure. J. Chem. Soc. Chem. Commun. 734–436.Google Scholar
  3. Benkovic, S. J. & Bullard, W. P. (1973). On the Mechanisms of Action of Folic Acid Cofactors. Prog. Bioorg. Chem. 2, 133–175.Google Scholar
  4. Borchardt, R. T. (1973). Catechol-O-Methyltransferase:l. Kinetics of Tropolone Inhibition. J. Med. Chem. 16, 377–382.PubMedCrossRefGoogle Scholar
  5. Borchardt, R. T. (1973). Catechol-O-Methyltransferase:2. In Vitro Inhibition by Substituted 8-Hydroxyquinolines. J. Med. Chem. 16, 382–387.PubMedCrossRefGoogle Scholar
  6. Borchardt, R. T. (1979). Mechanism of Alkaline Hydrolysis of S-Adenosyl-L-methionine and Related Sulfonium Nucleosides. J. Amer. Chem. Soc. 101, 458–463, and references therein.CrossRefGoogle Scholar
  7. Coward, J. K. (1977). Chemical Mechanisms of Methyl Transfer Reactions: Comparison of Methylases with Nonenzymic “Model Reactions”, In The Biochemistry of Adenosylmethionine (eds. F. Salvatore, E. Borek, V. Zappia, H. G. Williams-Ashman, and F. Schlenk), Columbia Univ. Press, New York, 127–144.Google Scholar
  8. Coward, J. K. (1980). Methylase Mechanisms: Steric Constraints and Modes of Catalysis, In Natural Sulfur Compounds (eds. D. Cavalini, G. E. Gaull, and V. Zappia), Plenum Press, New York, 15–24.CrossRefGoogle Scholar
  9. Coward, J. K. & Sweet, W. D. (1971). Kinetics and Mechanism of Methyl Transfer from Sulfonium Compounds to Various Nucleophiles. J. Org. Chem. 36, 2337–2346.CrossRefGoogle Scholar
  10. Coward, J. K., D’Urso-Scott, M., & Sweet, W. D. (1972). Inhibition of Catechol-O-Methyltransferase by S-Adenosylhomocysteine and S-Adenosylhomocysteine Sulfoxide, a Potential Transition-State Analog. Biochem. Pharmacol. 21, 1200–1203.PubMedCrossRefGoogle Scholar
  11. Coward, J. K., Slisz, & Wu, F. Y-H. (1973). Kinetic Studies on Catechol-O-Methyltransferase. Product Inhibition and the Nature of the Catechol Binding Site. Biochemistry 12, 2291–2297.PubMedGoogle Scholar
  12. Coward, J. K. Bussolotti, D. L., & Chang, C-D. (1974). Analogs of S-Adenosylhomocysteine as Potential Inhibitors of Biological Transmethylation. Inhibition of Several Methylases by S-Tubercidinylhomocysteine. J. Med. Chem. 17, 1286–1289.PubMedGoogle Scholar
  13. Coward, J. K., Lok, R., Takagi, O. (1976). General Base Catalysis in Nucleophilic Attack at sp3 Carbon of Methylase Model Compounds. J. Amer. Chem. Soc. 98, 1057–1059.CrossRefGoogle Scholar
  14. Coward, J. K. Motola, N. C., & Moyer, J. D. (1977). Polyamine Biosynthesis in Rat Prostate. Substrate and Inhibitor Properties of 7-Deaza Analogs of Decarboxylated S-Adenosylmethionine and 5’-Methylthioadenosine. J. Med. Chem. 20, 500–505.PubMedCrossRefGoogle Scholar
  15. Crooks, P. A., Dreyer, R. N. & Coward, J. K. (1979). Metabolism of S-Adenosylhomocysteine and S-Tubercidinylhomocysteine in Neuroblastoma Cells. Biochemistry 12, 2601–2609.CrossRefGoogle Scholar
  16. Floss, H. G. & Tsai, M-D. (1979). Chiral Methyl Groups. Adv. Enzymol. 50, 243–302.PubMedGoogle Scholar
  17. Heller, J. S., Canellakis, E. S., Bussolotti, D. L., & Coward, J. K. (1975). Stable Multisubstrate Adducts as Enzyme Inhibitors: Potent Inhibition of Ornithine Decarboxylase by N-(5’-Phosphopyridoxyl)-Ornithine. Biochim. Biophys. Acta 403, 197–207.PubMedCrossRefGoogle Scholar
  18. Hegazi, M. F., Borchardt, R. T., & Schowen, R. L. (1979). α-Deuterium and Carbon-13 Isotope Effects for Methyl Transfer Catalyzed by Catechol O-Methyltransferase. SN2-Like Transition State. J. Amer. Chem. Soc. 101, 4359–4365.CrossRefGoogle Scholar
  19. Hibasami, H., Borchardt, R. T., Chen, S. Y., Coward, J. K., & Pegg, A. E. (1980). Studies of Inhibition of Rat Spermidine Synthase and Spermine Synthase. Biochem. J. 187, 419–428.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Ingold, C. K. (1969). Structure and Mechanism in Organic Chemistry, 2nd Ed. Cornell Univ. Press, Ithaca, N.Y.Google Scholar
  21. Knipe, J. O. & Coward, J. K. (1979). Role of Buffers in a Methylase Model Reaction. General Base Catalysis by Oxyanions vs. Nucleophilic Dealkylation by Amines. J. Amer. Chem. Soc. 101, 4339–4348.Google Scholar
  22. Knipe, J. O., Vasquez, P. J., & Coward, J. K. (1982). Studies on General Base vs. Nucleophilic Catalysis in the Intramolcular Alkylation of Phenols. J. Amer. Chem. Soc. 104, in press.Google Scholar
  23. Lok, R. & Coward, J. K. 1976). Steric Constraints in Intramolecular Reactions at sp3 Carbon:Implications for Methylase Mechanisms. Bioorg. Chem. 5, 169–175.CrossRefGoogle Scholar
  24. Matthews, R. G. & Baugh, C. M. (1980). Interactions of Pig Liver Methylenetetrahydrofolate Reductase with Methylenetetrahydropteroylpolyglutamate Substrates and with Dihydropteroylpolyglutamate Inhibitors. Biochemistry 19, 2040–2045.PubMedCrossRefGoogle Scholar
  25. Matthews, R. G. & Haywood, B. J. (1979). Inhibition of Pig Liver Methylenetetrahydrofolate Reductase by Dihydrofolate:Some Mechanistic and Regulatory Implications. Biochemistry 18, 4845–4851.PubMedCrossRefGoogle Scholar
  26. Pajula, R. L. & Raina, A. (1979). Methylthioadenosine: A Potent Inhibitor of Spermine Synthase from Bovine Brain. FEBS Letts. 99, 343–345.CrossRefGoogle Scholar
  27. Pegg, A. E., Borchardt, R. T., & Coward, J. K. (1981). Effect of Inhibitors of Spermidine and Spermine Synthesis on Polyamine Concentrations and Growth of Transformed Mouse Fibroblasts. Biochem. J. 194, 79–89.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Swain, C. G., Kuhn, D. A. & Schowen, R. L. (1965). Effect of Structural Changes in Reactants on the Position of Hydrogen-Bonding Hydrogens and Solvating Molecules in Transition States. The Mechanism of Tetrahydrofuran Formation from 4-Chlorobutanol. J. Amer. Chem. Soc. 87, 1553–1561.Google Scholar
  29. Tang, K-C., Pegg, A. E., & Coward, J. K. (1980). Specific and Potent Inhibition of Spermidine Synthase by the TransitionState Analog, S-Adenosyl-3-Thio-1,8-Diaminooctane. Biochem. Biophys. Res. Commun. 96, 1371–1377.PubMedCrossRefGoogle Scholar
  30. Tang, K-C., Mariuzza, R., & Coward, J. K. (1981). Synthesis and Evaluation of Some Stable Multisubstrate Adducts as Specific Inhibitiors of Spermidine Synthase. J. Med. Chem. 24, 1277–1284.PubMedCrossRefGoogle Scholar
  31. Taylor, R. T. & Weissbach, H. (1968). Escherichia coli B N5-Methyltetrahydrofolate-Homocysteine Vitamin-B12 Transmethylase: Formation and Photolability. Arch. Biochem. Biophys. 123, 109–126.PubMedCrossRefGoogle Scholar
  32. Taylor, R. T. & Weissbach, H. (1973). N5-MethyltetrahydrofolateHomocysteine Methyltransferases. The Enzymes, 3rd Ed. 9, 121–165.CrossRefGoogle Scholar
  33. Tenud, L., Farooq, S., Seibl, J. & Eschenmoser, A. (1970). Endocyclische SN-Reaktionen am gesättigten Kohlenstoff? Helv. Chim. Acta 53, 2059–2069.CrossRefGoogle Scholar
  34. Whitfield, C. D., Steers, Jr., E. J. & Weissbach, H. (1970). Purification and Properties of 5-MethyltetrahydropteroyltriglutamateHomocysteine Transmethylase. J. Biol. Chem. 245, 390–401.PubMedGoogle Scholar
  35. Williams-Ashman, H-G., & Pegg, A. E. (1980). Aminopropyl Group Transfers in Polyamine Biosynthesis. In Polyamines in Biology and Medicine (eds., D. R. Morris and L. J. Marton), Marcell Dekker, New York.Google Scholar
  36. Wolfenden, R. (1976). Transition State Analog Inhibitors and Enzyme Catalysis. Ann. Rev. Biophys. Bioeng. 5, 271–306.CrossRefGoogle Scholar
  37. Woodard, R. W., Tsai, M-D. Floss, H. G., Crooks, P. A. & Coward, J. K. (1980). Stereochemical Course of the Transmethylation Catalyzed by Catechol O-Methyltransferase. J. Biol. Chem. 255, 9124–9127.PubMedGoogle Scholar
  38. Usdin, E., Borchardt, R. T., & Creveling, C. R., eds. (1979). Transmethylation, Elsevier North-Holland, New York.Google Scholar
  39. Zappia, Y., Cacciapuoti, G., Pontoni, G., & Oliva, A. (1980). Mechanism of Propylamine-transfer Reactions: Kinetic and Inhibition Studies on Spermidine Synthase from Escherichia Coli. J. Biol. Chem. 255, 7276–7280.PubMedGoogle Scholar

Copyright information

© The contributors 1982

Authors and Affiliations

  • James K Coward

There are no affiliations available

Personalised recommendations