Coexistence of neuroactive substances as revealed by immunohistochemistry with monoclonal antibodies

  • J. V. Priestley
  • A. C. Cuello


The idea that neuroactive substances may coexist in neurones is not new and indeed probably goes back as far as the original hypothesis of Burn and Rand (1959) concerning the presence of acetylcholine (ACh) along with noradrenaline (NA) in certain postganglionic sympathetic nerves. Although this hypothesis as originally proposed has not been confirmed it has been shown that autonomic neurones can produce alternatively acetylcholine or noradrenaline (for review, see Patterson, 1978). These early ideas and their implications for present concepts of coexistence have been reviewed by a number of authors (Burnstock, 1976; see also Burnstock, Jaim Etcheverry and Zieher, and Osborne, chapters 6, 8 and 9). Yet it is only recently that the idea that a neurone may contain more than one neuroactive substance has found general acceptance, and this has been largely due to the discovery of peptides in the nervous system and to the application of immunohistochemical techniques for their localisation (for reviews, see Cuello, 1978; Emson 1979; Hökfelt et al., 1980a).


Thyrotropin Release Hormone Electron Microscopic Level Substantia Gelatinosa Spinal Trigeminal Nucleus Large Dense Core Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alonso, G. and Assenmacher, I. (1979). The smooth endoplasmic reticulum in neurohypophysial axons of the rat: possible involvement in transport, storage and release of neurosecretory material. Cell Tiss. Res., 199, 415–429CrossRefGoogle Scholar
  2. Avrameas, S. and Ternynck, T. (1971). Peroxidase labelled antibody and Fab conjugates with enhanced intracellular penetration. Immunochemistry, 8, 1175–1179CrossRefGoogle Scholar
  3. Barber, R. P., Vaughn, J. E., Randall-Slemmon, J., Salvaterra, P. M., Roberts, E. and Leeman, S. E. (1979). The origin, distribution and synaptic relationships of substance P axons in rat spinal cord. J, comp. Neurol., 184, 331–352CrossRefGoogle Scholar
  4. Barry, J., Dubois, M. P. and Poulain, P. (1973). LRF-producing cells of the mammalian hypothalamus. Z. Zellforsch. Mikrosk. Anat., 146, 351–366CrossRefGoogle Scholar
  5. Basbaum, A. I., Glazer, E. J., Steinbusch, H., and Verhofstad, A. (1980). Serotonin and enkephalin co-exist in neurons involved in opiate and stimulation-produced analgesia in the cat. Soc. Neurosci. Abstr., 6, 540Google Scholar
  6. Beaudet, A., Pickel, V. M., Joh, T. H., Miller, R. J. and Cuenod, M. (1980). Simultaneous detection of serotonin and tyrosine hydroxlase or enkephalin containing neurons by combined radioautorgraphy and immunocytochemistry in the central nervous system of the rat. Soc. Neurosci. Abstr., 6, 353Google Scholar
  7. Belin, M. F., Aguera, M., Tappaz, M., McRae-Degueuroe, A., Bobillier, P. and Pujol, J. F. (1979). GABA-accumulating neurons in the nucleus raphe dorsalis and periaqueductal gray in the rat: a biochemical and radioautographic study. Brain Res., 170, 279–297CrossRefGoogle Scholar
  8. Belin, M. F., Nanopoulos, D., Steinbusch, H., Verhofstrad, A., Maitre, M., Jouvet, M. and Pujol, J. F. (1981). Glutamate decarboxylase and serotonin in a single neuron in the nucleus raphe dorsalis of the rat demonstrated by combined immunocytochemical staining method. C. r. Acad. Sci., series D, 293, 337–342Google Scholar
  9. Boorsma, D., Cuello, A. C. and Van Leeuwen, F. (1982). Direct immunocytochemistry with a horseradish peroxidase conjugated monoclonal antibody against substance P. J. Histochem. Cytochem., in pressGoogle Scholar
  10. Bowker, R. M., Steinbusch, H. W. M. and Coulter, J. D. (1981). Serotonergic and peptidergic projections to the spinal cord demonstrated by a combined retrograde HRP histochemical and immunocytochemical staining method. Brain Res., 211, 412–417CrossRefGoogle Scholar
  11. Broadwell, R. D., Oliver, C. and Brightman, M. W. (1979). Localization of neurophysin within organelles associated with protein synthesis and packaging in the hypothalamoneurohypophysial system: an immunocytochemical study. Proc. natn. Acad. Sci. U.S.A., 76, 5999–6003CrossRefGoogle Scholar
  12. Buijs, R. M. (1978). Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Pathways to the limbic system, medulla oblongata and spinal cord. Cell Tiss. Res., 192, 423–435CrossRefGoogle Scholar
  13. Buijs, R. M. and Swaab, D. F. (1979). Immunoelectronmicroscopical demonstration of vasopressin and oxytocin synapses in the limbic system of the rat. Cell Tiss. Res., 204, 355–365CrossRefGoogle Scholar
  14. Burn, J. H. and Rand, M. I. (1959). Sympathetic postganglionic mechanism. Nature London, 184, 163–165CrossRefGoogle Scholar
  15. Burnstock, G. (1976). Do some nerve cells release more than one transmitter? Neuroscience, 1, 239–248CrossRefGoogle Scholar
  16. Chan-Palay, V. and Palay, S. L. (1977). Ultrastructural identification of substance P and their processes in rat sensory ganglia and their terminals in the spinal cord by immunocytochemistry. Proc. natn. Acad. Sci U.S.A., 74, 4050–4054CrossRefGoogle Scholar
  17. Chan-Palay, V., Jonsson, G. and Palay, S. L. (1978). Serotonin and substance P coexist in neurons of the rat’s central nervous system. Proc. natn. Acad. Sci. U.S.A., 75, 1581–1586Google Scholar
  18. Chan-Palay, V. (1979). Combined immunocytochemistry and autoradiography after in vivo injections of monoclonal antibody to substance P and 3H-serotonin: coexistence of two putative transmitters in single raphe cells and fiber plexuses. Anat. Embryol. Berlin, 156, 241–254CrossRefGoogle Scholar
  19. Consolazione, A., Milstein, C., Wright, B. and Cuello, A. C. (1981). Immunocytochemical detection of serotonin with monoclonal antibodies. J. Histochem. Cytochem., 29, 1425–1430CrossRefGoogle Scholar
  20. Coons, A. H. and Kaplan, M. H. (1950). Localisation of antigens in tissue cells: II Improvements in a method for the detection of antigen by means of fluorescent antibody. J. exp. Med., 91, 1–9CrossRefGoogle Scholar
  21. Cuello, A. C. (1978). Immunocytochemical studies of the distribution of neurotransmitters and related substance in CNS. In Handbook of Psychopharmacology, 9 (ed. L. L. Iversen, S. D. Iversen and S. H. Snyder), Plenum Press, New York, pp. 69–137Google Scholar
  22. Cuello, A. C., Galfre, G. and Milstein, C. (1979). Detection of substance P in the central nervous system by a monoclonal antibody. Proc. natn. Acad. Sci. U.S.A., 76, 3532–3536CrossRefGoogle Scholar
  23. Cuello, A. C., Milstein, C. and Priestley, J. V. (1980). Use of monoclonal antibodies in immunocytochemistry with special reference to the central nervous system. Brain Res. Bull., 5, 575–587CrossRefGoogle Scholar
  24. Cuello, A. C. and Milstein, C. (1981). Use of internally labelled monoclonal antibodies. In Physiological Peptides and New Trends in Radioimmunology (ed. Ch. A. Bizollon) Elsevier, Amsterdam, pp. 293–305Google Scholar
  25. Cuello, A. C., Priestley, J. V. and Milstein, C. (1982). Immunocytochemistry with internally labelled monoclonal antibodies. Proc. natn. Acad. Sci. U.S.A.,79, 665–669CrossRefGoogle Scholar
  26. Dahlström, A. (1968). Effect of colchicine on transport of amine storage granules in sympathetic nerves of rat. Eur. J. Pharmac., 5, 111–113CrossRefGoogle Scholar
  27. Dahlström, A. and Fuxe, K. (1964). Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brainstem neurons. Acta Physiol. Scand., 62, suppl. 232, 1–55Google Scholar
  28. Del Fiacco, M. and Cuello, A. C. (1980). Substance P and enkephalin-containing neurones in the rat trigeminal system. Neuroscience, 5, 803–815CrossRefGoogle Scholar
  29. Dube, D. and Pelletier, G. (1979). Effect of colchicine on the immunohistochemical localization of somatostatin in the rat brain: light and electron microscopic studies. J. Histochem. Cytochem., 27, 1577–1581CrossRefGoogle Scholar
  30. Dutton, A. H., Tokuyasu, K. T. and Singer, S. J. (1979). Iron-dextran antibody conjugates: general method for simultaneous staining of two components in high resolution immunoelectron microscopy. Proc. natn. Acad. Sci. U.S.A., 76, 3392–3396CrossRefGoogle Scholar
  31. Emson, P. C. (1979). Peptides as neurotransmitter candidates in the mammalian CNS. Progress in Neurobiology, 13, 61–116CrossRefGoogle Scholar
  32. Flament-Durand, J. and Dustin, P. (1972). Studies on the transport of secretory granules in the magnocellular hypothalamic neurons. I. Action of colchicine on axonal flow and neurotubules in the paraventricular nuclei. Z. Zellforsch., 130, 440–454CrossRefGoogle Scholar
  33. Gainer, H., Same, Y. and Brownstein, M. J. (1977). Biosynthesis and axonal transport of rat neurohypophyseal proteins and peptides. J. Cell Biol., 73, 366–381CrossRefGoogle Scholar
  34. Galfre, G. and Milstein, C. (1981). Preparation of monoclonal antibodies, strategies and procedures. Methods in Enzymology, 73, 3–46CrossRefGoogle Scholar
  35. Gaffen, L. B., Livett, B. G. and Rush, R. A. (1969). Immunohistochemical localization of protein components of catecholamine storage vesicles. J. Physiol. Lond., 204, 593–605CrossRefGoogle Scholar
  36. Geuze, J. J. and Slot, J. W. (1980). Double-labelling and quantitative immunoelectron microscopy on utrathin frozen sections. In EMBO Practical Course Immunocytochemistry (abstract).Google Scholar
  37. Gilbert, R. F. T., Emson, P. C., Hunt, S. P., Bennett, G. W., Marsden, C. A., Sandberg, B.E.B., Steinbusch, H. W. M. and Verhofstad, A. A. J. (1982). The effects of monoamine neurotoxins on peptides in the rat spinal cord. Neuroscience, 7, 69–87CrossRefGoogle Scholar
  38. Goldschmidt, R. B. and Steward, O. (1980). Preferential neurotoxicity of colchicine for granule cells of the dentate gyrus of the adult rat. Proc. natn. Acad. Sci. U.S.A., 77, 3047–3051CrossRefGoogle Scholar
  39. Hanker, J. S. (1979). Osmiophilic reagents in electronmicroscopic histocytochemistry. Prog. Histochem. Cytochem., 12, (1), 1–85CrossRefGoogle Scholar
  40. Hindelang-Gertner, C., Stoeckel, M. E. and Stutinsky, F. (1976). Colchicine effects on neurosecretory neurons and other hypothalamic and hypophysial cells, with special reference to changes in the cytoplasmic membranes. Cell Tiss. Res., 170, 17–41CrossRefGoogle Scholar
  41. Hökfelt, T., Elfvin, L., Elde, R., Schultzberg, M., Goldstein, M. and Luft, R. (1977a). Occurrence of somatostatin-like immunoreactivity is some peripheral sympathetic noradrenergic neurons. Proc. natn. Acad. Sci. U.S.A., 74, 3587–3591CrossRefGoogle Scholar
  42. Hökfelt, T., Ljungdahl, A., Terenius, L., Elde, R. and Nilsson, G. (1977b). Immunohistochemical analysis of peptide pathways possibly related to pain and analgesia: enkepahlin and substance P. Proc. natn. Acad. Sci. U.S.A., 74, 3081–3085CrossRefGoogle Scholar
  43. Hökfelt, T., Ljungdahl, A., Steinbusch, H., Verhofstad,A., Nilsson, G., Brodin, E., Pernow, B. and Goldstein, M. (1978). Immunohistochemical evidence of substance P-like immunoreactivity in some 5-hydroxytryptamine-containing neurons in the rat central nervous system. Neuroscience, 3, 517–538CrossRefGoogle Scholar
  44. Hökfelt, T., Johansson, O., Ljungdahl, A., Lundberg, J. M. and Schultzberg, M. (1980a). Peptidergic neurones. Nature London, 284, 515–521CrossRefGoogle Scholar
  45. Hökfelt, T., Lundberg, J. M., Schultzberg, M., Johansson, O., Ljungdahl, A. and Rehfeld, J. (1980b). Coexistence of peptides and putative transmitters in neurons. In Neural Peptides and Neuronal Communication (ed. E. Costa and M. Trabucchi), Raven Press, New York, pp. 1–23Google Scholar
  46. Hosoya, Y. and Matsushita, M. (1979). Identification and distribution of the spinal and hypophyseal projection neurons in the paraventricular nucleus of the rat. A light and electron microscopic study with the horseradish peroxidase method. Expl Brain Res., 35, 315–331CrossRefGoogle Scholar
  47. Johansson, O. (1978). Localization of somatostatin-like immunoreactivity in the golgi apparatus of central and peripheral neurons. Histochemistry, 58, 167–176CrossRefGoogle Scholar
  48. Johansson, O., Hökfelt, T., Jeffcoate, N. White, N. and Sternberger, L. A. (1980). Ultrastructural localisation of TRH-like immunoreactivity. Expl Brain Res., 38, 1–10CrossRefGoogle Scholar
  49. Johansson, O., Hökfelt, T., Pernow, B., Jeffcoate, S. L., White, N., Steinbusch, H. W. M., Verhofstad, A. A. J., Emson, P. C. and Spindel, E. (1981). Immunohistochemical support for three putative transmitters in one neuron: coexistence of 5-hydroxytryptamine, substance P- and thyrotropin releasing hormone-like immunoreactivity in medullary neurons projecting to the spinal cord. Neuroscience, 6, 1857–1881CrossRefGoogle Scholar
  50. Joseph, S. A. and Sternberger, L. A. (1979). The unlabelled antibody method. Contrasting colour staining of β-lipotropin and ACTH-associated hypothalamic peptides without antibody removal. J. Histochem. Cytochem., 27, 1430–1437CrossRefGoogle Scholar
  51. Köhler, G. and Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature London, 256, 495–497CrossRefGoogle Scholar
  52. Livett, B. G., Uttenthal, L. O. and Hope, D. B. (1971). Localization of neurophysin-II in the hypothalamo-neurohypophysial system of the pig by immunofluorescence histochemistry. Phil. Trans. R. Soc. Lond., B261, 371–378CrossRefGoogle Scholar
  53. Ljungdahl, A., Hökfelt, T., Goldstein, M. and Park, D. (1975). Retrograde peroxidase transport tracing of neurons combined with transmitter histochemistry. Brain Res., 84, 313–319CrossRefGoogle Scholar
  54. Ljungdahl, A., Hökfelt, T. and Nilsson, G. (1978). Distribution of substance P-like immunoreactivity in the central nervous system of the rat. I. Cell bodies and nerve terminals. Neuroscience, 3, 861–943CrossRefGoogle Scholar
  55. Mason, D. Y. and Sammons, R. (1978). Alkaline phosphatase and peroxidase for double immunoenzymatic labelling of cellular constituents. J. clin. Path., 31, 454–460CrossRefGoogle Scholar
  56. Nairn, R. C. (1976). Fluorescent Protein Tracing. Fourth edition, Churchill Livingstone, Edinburgh.Google Scholar
  57. Nakane, P. K. (1968). Simultaneous localisation of multiple tissue antigens using the peroxidase-labelled antibody method: a study on pituitary glands of the rat. J. Histochem. Cytochem., 16, 557–560CrossRefGoogle Scholar
  58. Nilsson, G., Hökfelt, T. and Pernow, B. (1974). Distribution of substance P-like immunoreactivity in the rat central nervous system as revealed by immunohistochemistry. Med. Biol., 52, 424–427Google Scholar
  59. Ochi, J. and Shimizu, K. (1978). Occurrence of dopamine-containing neurons in the midbrain raphe nuclei of the rat. Neurosci. Lett., 8, 317–320CrossRefGoogle Scholar
  60. Patterson, P. H. (1978). Environmental determination of autonomic neurotransmitter function. A. Rev. Neurosci., 1, 1–17CrossRefGoogle Scholar
  61. Pelletier, G., Steinbusch, H. W. M. and Verhofstad, A. A. J. (1981). Immunoreactive substance P and serotonin present in the same dense-core vesicles. Nature London, 293, 71–72CrossRefGoogle Scholar
  62. Pickel, V. M., Reis, D. J. and Leeman, S. E. (1977). Ultrastructural localisation of substance P in neurons of rat spinal cord. Brain Res., 122, 534–540CrossRefGoogle Scholar
  63. Pickel, V. M., Sumal, K. K., Beckley, S. C., Miller, R. J. and Reis, D. J. (1980). Immunocytochemical localization of enkephalin in the neostriatum of rat brain: a light and electron microscopic study. J. comp. Neurol., 189, 721–740CrossRefGoogle Scholar
  64. Pickering, B. T. (1980). Lessons from a peptidergic neurone. Nature London, 288, 117CrossRefGoogle Scholar
  65. Ploem, J. S. (1975). General introduction to Fifth International Conference on Immunofluorescence and Related Staining Techniques. Ann. N. P. Acad. Sci., 254., 4–20CrossRefGoogle Scholar
  66. Priestley, J. V., Consolazione, A. and Cuello, A. C. (1980). Identification of substance P and serotonin containing neurones in the CNS with monoclonal antibodies. In Abstracts VIth International Histochemistry and Cytochemistry Congress. Royal Microscopical Society, Oxford, p. 310Google Scholar
  67. Priestley, J. V. (1981). Ultrastructural localisation of substance P and enkephalin in the substantia gelatinosa of the spinal trigeminal nucleus. Br. J. Pharmac., 74, 893PGoogle Scholar
  68. Priestley, J. V., Somogyi, P. and Cuello, A. C. (1981). Neurotransmitter specific projection neurons revealed by combining PAP immunohistochemistry with retrograde transport of HRP. Brain Res., 220, 231–240CrossRefGoogle Scholar
  69. Priestley, J. V. and Cuello, A. C. (1982). Electron microscopic immunocytochemistry: CNS transmitters and transmitter markers. In IBRO Handbook Methods in the Neurosciences: Immunohistochemistry (ed. A. C. Cuello), Wiley, Chichester, UK, in pressGoogle Scholar
  70. Salpeter, M. M., Bachmann, L. and Salpeter, E. E. (1969). Resolution in electron-microscopic radioautography. J. Cell Biol., 41, 1–20CrossRefGoogle Scholar
  71. Sar, M., Stumpf, W. C., Miller, R. J., Chang, K.-J. and Cuatrecasas, P. (1978). Immunohistochemical localisation of enkephalin in rat brain and spinal cord. J. comp. Neurol., 182, 17–38CrossRefGoogle Scholar
  72. Sofroniew, M. V. (1979). Immunoreactive β-endorphin and ACTH in the same neuron of the hypothalamic arcuate nucleus in the rat. Am. J. Anat., 154, 283–288CrossRefGoogle Scholar
  73. Sofroniew, M. V., and Schrell, U. (1981). Evidence for a direct projection from vasopressin neurons in the hypothalamic paraventricular nucleus to the medulla oblongata: immunohistochemical visualization of both the horseradish peroxidase transported and the peptide produced by the same neurons. Neurosci. Lett., 22, 211–217CrossRefGoogle Scholar
  74. Snyder, S. H. (1980). Peptide neurotransmitters with possible involvements in pain perception. In Pain: Association for Research in Nervous and Mental Disease 58, (ed. J. J. Bonica), Raven Press, New York, pp. 233–243Google Scholar
  75. Steinbush, J. W. M. (1981). Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience, 6, 557–618CrossRefGoogle Scholar
  76. Sterngerger, L. A. (1979). Immunocytochemistry. Second edition, Wiley, Chichester, UK.Google Scholar
  77. Tramu, G., Pillez, A. and Leonardelli, J. (1978). An efficient method of antibody elution for the successive or simultaneous localization of two antigens by immunocytochemistry. J. Histochem. Cytochem., 26, 322–324CrossRefGoogle Scholar
  78. Tranzer, J. P. (1972). A new amine storing compartment in adrenergic axons. Nature New Biol., 237, 57–58CrossRefGoogle Scholar
  79. Uhl, G. R., Goodman, R. R. and Snyder, S. H. (1979). Neurotensin-containing cell bodies, fibres and nerve terminals in the brain stem of the rat: immunohistochemical mapping. Brain Res., 167, 77–91CrossRefGoogle Scholar
  80. Van der Kooy, D., Hunt, S. P., Steinbusch, H. W. M. and Verhofstad, A. J. (1981). Separate populations of cholecystokinin and 5-hydroxytryptamine-containing neuronal cells in the dorsal raphe, and their contribution to the ascending raphe projections. Neurosci. Lett., 26, 25–30CrossRefGoogle Scholar
  81. Vandesande, F., Dierickx, K. and DeMey, J. (1977). The origin of the vasopressinergic and oxytocinergic fibres of the external regions of the median eminence of the rat hypothalamus. Cell Tiss. Res., 180, 443–452CrossRefGoogle Scholar

Copyright information

© The Contributors 1982

Authors and Affiliations

  • J. V. Priestley
    • 1
  • A. C. Cuello
    • 1
  1. 1.Neuroanatomy Neuropharmacology GroupUniversity Departments of Pharmacology and Human AnatomyOxfordUK

Personalised recommendations