Advertisement

Nematodes in Immunodeprived and Genetically Immunodefective Rodents

  • Bridget M. Ogilvie
  • Michele Jungery
Chapter

Abstract

Most of the nematodes that parasitise man or domestic animals are host-specific. The filarial nematodes Wuchereria bancrofti and Onchocerca volvulus, in particular, develop to maturity only in man and some monkeys. Filarial nematodes are usually unable to develop beyond the early 4th larval stage in rats and mice, but the adult stages or microfilariae may persist for some weeks in mice when transplanted from a permissive host. Mice infected in this way have been described as ‘proxy’ hosts (Nelson et al., 1966). Certain nematodes that infect man develop in less common laboratory rodents, such as hamsters (Necator americanus: Sen, 1972) and jirds (Brugia spp: Denham, this volume). Other nematodes will complete only part of their life cycle in rodents — for example, Ascaris, which does not develop much beyond the 3rd larval stage in the lungs and liver of rodents. In contrast, Trichinella spiralis shows little host specificity, infecting man, rats and mice and mammals in general, and is in consequence the most studied of all nematodes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amsbaugh, D. F., Hansen, C. T., Prescott, B., Stashak, P. W., Barthold, D. R. and Baker, P. J. (1972). Genetic control of antibody response to Type III pneumococcal polysaccharide in mice. I. Evidence that an X-linked gene plays a decisive role in determining responsiveness. J. exp. Med., 136, 931–49CrossRefGoogle Scholar
  2. Basten, A. and Beeson, P. B. (1970). Mechanism of eosinophilia. II. Role of the lymphocyte. J. exp. Med., 131, 1288–305CrossRefGoogle Scholar
  3. Behnke, J. M. and Parish, H. A. (1979). Expulsion of Nematospiroides dubius from the intestine of mice treated with immune serum. Parasite Immun., 1, 13–26CrossRefGoogle Scholar
  4. Berlin, R. D. and Fera, J. P. (1977). Changes in membrane microviscosity associated with phagocytosis. Effects of colchicine. Proc. natn. Acad. Sci. USA, 74, 1072–6CrossRefGoogle Scholar
  5. Biozzi, G., Asofsky, R., Lieberman, R., Stiffel, C., Mouton, D. and Benacerraf, B. (1970). Serum concentrations and allotypes of immunoglobulins in two lines of mice genetically selected for ‘high’ or ‘low’ antibody synthesis. J. exp. Med., 132, 752–64CrossRefGoogle Scholar
  6. Biozzi, G., Mouton, D., Sant’ Anna, O. A., Passos, H. C., Gennari, M., Reis, M. H., Ferreira, V. C. A., Heumann, A. M., Bouthillier, Y., Ibanez, O. M., Stiffel, C. and Siqueira, M. (1979). Genetics of immunoresponsiveness to natural antigens in the mouse. Curr. Topics Microbiol. Immun., 85, 31–98CrossRefGoogle Scholar
  7. Biozzi, G., Stiffel, C., Mouton, D., Bouthillier, Y. and Decreusefond, C. (1972). Cytodynamics of the immune response in two lines of mice genetically selected for ‘high’ and ‘low’ antibody synthesis. J. exp. Med., 135, 1071–94CrossRefGoogle Scholar
  8. Carvalho-Filho, E. (1978). Strongyloidiasis. In Clinics in Gastroenterology, Vol. 7 (P.D. Marsden, ed.), Saunders, Baltimore, pp. 179–200Google Scholar
  9. Dessein, A. J., Parker, W. L., James, S. L. and David, J. R. (1981). IgE antibody and resistance to infection. 1. Selective suppression of the IgE antibody response in rats diminishes the resistance and the eosinophil response to Trichinella spiralis infection. J. exp. Med., 153, 423–37CrossRefGoogle Scholar
  10. Fidler, J. M., Morgan, E. L. and Weigle, W. O. (1980). B lymphocyte differentiation in the CBA/N mouse: a delay in maturation rather than a total arrest. J. Immun., 124, 13–9Google Scholar
  11. Haak, R. A., Ingraham, L. M., Baehner, R. L. and Boxer, L. A. (1979). Membrane fluidity in human and mouse Chediak-Higashi leucocytes. J. clin. Invest., 64, 138–44CrossRefGoogle Scholar
  12. Haque, A., Camus, D., Ogilvie, B. M., Capron, M., Bazin, H. and Capron, A. (1981). Dipetalonema viteae infective larvae reach reproductive maturity in rats immuno-depressed by prior exposure to Schistosoma mansoni or its products and in congenitally athymic rats. Clin. exp. Immun., 43, 1–9Google Scholar
  13. Haque, A., Worms, M. J., Ogilvie, B. M. and Capron, A. (1980). Dipetalonema viteae: microfilariae production in various mouse strains and in nude mice. Expl Parasit., 49, 398–404CrossRefGoogle Scholar
  14. Howard, J. G., Courtenay, B. M. and Desaymard, C. (1974). Equivalent responsiveness to branched polysaccharides and their dinitrophenyl conjugates in the Biozzi high and low responder lines of mice. Eur. J. Immun., 4, 453–7CrossRefGoogle Scholar
  15. Jacobson, R. H. and Reed, N. D. (1974). The thymus dependency of resistance to pinworm infection in mice. J. Parasit., 60, 976–9CrossRefGoogle Scholar
  16. Jacobson, R. H., Reed, N. D. and Manning, D. D. (1977). Expulsion of Nippostrongylus brasiliensis from mice lacking antibody production potential. Immunology, 32, 867–74Google Scholar
  17. Jenkins, D. C. and Carrington, T. S. (1981) Nematospiroides dubius. The course of primary, secondary and tertiary infections in high and low responder Biozzi mice. Parasitology, 82, 311–8CrossRefGoogle Scholar
  18. Jungery, M., Spry, C. J. F. and Ogilvie, B. M. (1981). Lysosomal enzymes enhance eosinophil attachment and degranulation. Studies with defective eosinophils from beige mice. (Submitted for publication)Google Scholar
  19. Kitamura, Y., Go, S. and Hatanaka, K. (1978). Decrease of mast cells in W/Wv mice and their increase by bone marrow transplantation. Blood, 52, 447–52Google Scholar
  20. Lee, G. B. and Ogilvie, B. M. (1981). The mucous layer of the small intestine — its protective effect in rats immune to Trichinella spiralis. In Trichinellosis (C.W. Kim, E. J. Ruitenberg and J. S. Teppema, eds), Reedbooks, Chertsey, pp. 91–95Google Scholar
  21. Liacopoulos-Briot, M., Bouthillier, Y., Mouton, D., Lambert, F., Decreusefond, C., Stiffel, C. and Biozzi, G. (1972). Comparison of skin allograft rejection and cytotoxic antibody production in two lines of mice genetically selected for ‘high’ and ‘low’ antibody synthesis. Transplantation, 14, 590–6CrossRefGoogle Scholar
  22. McCulloch, E. A., Siminovitch, L. and Till, J. E. (1964). Spleen-colony formation in anaemic mice of genotype WWv. Science, N. Y., 144, 844–6CrossRefGoogle Scholar
  23. Mackenzie, C. D., Jungery, M., Taylor, P. M. and Ogilvie, B. M. (1980). Activation of complement, the induction of antibodies to the surface of nematodes and the effect of these factors and cells on worm survival in vitro. Eur. J. Immun., 10, 594–601CrossRefGoogle Scholar
  24. Mackenzie, C. D., Jungery, M., Taylor, P. M. and Ogilvie, B. M. (1981). The in-vitro interaction of eosinophils, neutrophils, macrophages and mast cells with nematode surfaces in the presence of complement or antibodies. J. Path., 133, 161–75CrossRefGoogle Scholar
  25. Mackenzie, C. D., Preston, P. M. and Ogilvie, B. M. (1978). Immunological properties of the surface of parasitic nematodes. Nature, Lond., 276, 826–8CrossRefGoogle Scholar
  26. Mekori, T. and Phillips, R. A. (1969). The immune response in mice of genotypes W/Wv and S1/S1dl. Proc. Soc. exp. Biol. Med., 132, 115–9CrossRefGoogle Scholar
  27. Miller, H. R. P., Nawa, Y. and Parish, C. R. (1979). Intestinal goblet cell differentiation in Nippostrongylus-infected rats after transfer of fractionated thoracic duct lymphocytes. Int. Archs Allergy appl. Immun., 59, 281–5CrossRefGoogle Scholar
  28. Mitchell, G. F. (1978) Metazoan and protozoan parasite infections in nude mice. Contemp. topics Immun., 8, 55–68CrossRefGoogle Scholar
  29. Nelson, G. S., Amin, M. A., Blackie, E. J. and Robson, N. (1966). The maintenance of Onchocerca gutturosa microfilariae in vitro and in vivo. Trans. R. Soc. trop. Med. Hyg., 60, 17CrossRefGoogle Scholar
  30. Oliver, J. M. (1975). The role of microtubules and cGMP in the control of cell surface topography. In Immune Recognition (A. S. Rosenthal, ed.), Academic Press, New York, p. 445Google Scholar
  31. Oliver, J. M. (1976). Impaired microtubule function correctable in CGMP and cholinergic agonists in Chediak-Higashi Syndrome. Am. J. Path., 85, 395–418Google Scholar
  32. Oliver, J. M. (1978) Cell biology of leukocyte abnormalities — membrane and cytoskeletal function in normal and defective cells. Am. J. Path., 93, 221–70Google Scholar
  33. Oliver, C. and Essner, E. (1973). Distribution of anomalous lysosomes in the beige mouse: a homologue of Chediak-Higashi Syndrome. J. Histochem. Cytochem., 21, 218–28CrossRefGoogle Scholar
  34. Oliver, J., Kraviee, J. A. and Berlin, R. D. (1976). Carbamylcholinr prevents giant granules formation in cultured fibroblasts from beige Chediak-Higashi mice. J. Cell Biol., 69, 205–10CrossRefGoogle Scholar
  35. Oliver, J. M. and Zurier, R. (1975). Concanavalin A cap formation on neutrophils of normal and beige Chediak-Higashi mice. Nature, Lond., 253, 471–3CrossRefGoogle Scholar
  36. Ogilvie, B. M., Love, R. J., Jarra, W. and Brown, K. N. (1977). Nippostrongylus eosinophils in three strains of rats and in athymic (nude) rats, following infection with the nematodes Nippostrongylus brasiliensis or Trichinella spiralis. Immunology, 39, 385–90Google Scholar
  37. Ogilvie, B. M. and Jones, V. E. (1967). Reaginic antibodies and immunity to Nippostrongylus brasiliensis in the rat. The effect of thymectomy, neonatal infections and splenectomy. Parasitology, 57, 335–49CrossRefGoogle Scholar
  38. Ogilvie, B. M., Love, R. J., Jarra, W. and Brown, K. N., (1977). Nippostrongylus brasiliensis infection in rats. The cellular requirement for worm expulsion. Immunology, 32, 521–8Google Scholar
  39. Perrudet-Badoux, A., Binaghi, R. A. and Biozzi, G. (1975). Trichinella infestation in mice genetically selected for high and low antibody production. Immunology, 29, 387–90Google Scholar
  40. Perrudet-Badoux, A., Binaghi, R. A., Biozzi, G. and Bouzzac-Aron, Y. (1978). Trichinella spiralis infection in mice. Mechanism of the resistance in animals genetically selected for high and low antibody production. Immunology, 35, 519–22Google Scholar
  41. Prouvost-Danon, A., Stiffel, C., Mouton, D. and Biozzi, G. (1971). Anaphylactic antibodies in mice genetically selected for antibody production. Immunology, 20, 25–7Google Scholar
  42. Roder, J. C. (1979a). The beige mutation in the mouse. I. A stem cell pre determined impairment in natural killer cell function. J. Immun., 123, 2168–73Google Scholar
  43. Roder, J. C. (1979b). The beige mutation in the mouse. II. Selectivity of the natural killer (NK) cell defect. J. Immun., 123, 2174–81Google Scholar
  44. Roder, J. C. (1980). A new immunodeficiency disorder in humans involving NK cells. Nature, Lond., 284, 553–4CrossRefGoogle Scholar
  45. Roder, J. C. and Durve, A. (1979). The beige mutation in the mouse selectively impairs natural killer functions. Nature, Lond., 278, 451–3CrossRefGoogle Scholar
  46. Root, R. K., Rosenthal, A. S. and Balestra, D. J. (1972) Abnormal bactericidal metabolic and lysosomal functions of Chediak-Higashi Syndrome leucocytes. J. clin. Invest., 51, 649–65CrossRefGoogle Scholar
  47. Rothwell, T. L. W. and Love, R. J. (1975). Studies of the responses of basophil and eosinophil leucocytes and mast cells to the nematode Trichostrongylus colubriformis. II. Changes in cell numbers following infection of the thymectomised and adoptively or passively immunised guinea-pigs. J. Path., 116, 183–94CrossRefGoogle Scholar
  48. Ruitenberg, E. J. and Elgersma, A. (1976). Absence of intestinal mast cell response in congenitally athymic mice during Trichinella spiralis infection. Nature, Lond., 264, 258–60CrossRefGoogle Scholar
  49. Scher, I., Ahmed, A., Strong, D. M., Steinberg, A. D. and Paul, W. E. (1975a). X-linked B lymphocyte immune defect in CBA/HN mice. I. Studies of the function and composition of spleen cells. J. exp. Med., 141, 788–803Google Scholar
  50. Scher, I., Frantz, M. M. and Steinberg, A. D. (1973). The genetics of the immune response to a synthetic double-stranded RNA in a mutant CBA mouse strain. J. Immun., 110, 1396–401Google Scholar
  51. Scher, I., Steinberg, A. D., Berning, A. K. and Paul, W. E. (1975b). X-linked B lymphocyte immune defect in CBA/N mice. II. Studies of the mechanisms underlying the immune defect. J. exp. Med., 142, 637–50CrossRefGoogle Scholar
  52. Sen, H. G. (1972). Necator americanus: behaviour in hamsters. Expl Parasit., 32, 26–32CrossRefGoogle Scholar
  53. Strobel, S., Miller, H. R. P. and Ferguson, A. (1981). Human intestinal mucosal mast cells. Evaluation of fixation and staining techniques. J. Clin. Path., 34, 851–8CrossRefGoogle Scholar
  54. Tai, P.-C. and Spry, C. J. F. (1980). Enzymes altering the binding capacity of human blood eosinophils for IgG antibody-coated erythrocytes (EA). Clin. exp. Immun., 40, 206–20Google Scholar
  55. Thompson, J. P., Crandall, R. B., Crandall, C. A. and Neilson, J. T. (1979). Clearance of microfilariae of Dipetalonema viteae in CBA/N and CBA/H mice. J. Parasit., 65, 966–9CrossRefGoogle Scholar
  56. Uber, C. L., Roth, R. L. and Levy, D. A. (1980). Expulsion of Nippostrongylus brasiliensis by mice deficient in mast cells. Nature, Lond., 287, 226–8CrossRefGoogle Scholar
  57. Wiener, E. and Bandied, A. (1974). Differences in antigen handling by peritoneal macrophages from the Biozzi high and low responder lines of mice. Eur. J. Immun., 4, 457–63CrossRefGoogle Scholar
  58. Wilson, R. J. M., Jones, V. E. and Leskowitz, S. (1967). Thymectomy and anaphylactic antibody in rats infected with Nippostrongylus brasiliensis. Nature, Lond., 213, 398–9CrossRefGoogle Scholar

Copyright information

© The contributors 1982

Authors and Affiliations

  • Bridget M. Ogilvie
    • 1
  • Michele Jungery
    • 2
  1. 1.The Wellcome TrustLondonUK
  2. 2.Tropical Disease Unit, Nuffield Department of Clinical MedicineJohn Radcliffe HospitalHeadington, OxfordUK

Personalised recommendations