Selective Inhibition of Sulfation in Vivo

  • Gerard J. Mulder
  • Ina C. M. Halsema
  • Henk Koster
  • John H. N. Meerman
  • K. Sandy Pang


Sulfation is one of the most versatile conjugation reactions which accepts phenolic and alcoholic hydroxyl groups, hydroxamic acids and amines as acceptor grouns for conjugation. In this chapter only the sulfation of low-molecular weight substances will be discussed; most likely, completely unrelated sulfotransferases are involved in the sulfation of macromolecules like proteins and glycosaminoglycans, or phospholipids. Further, there are no data as yet on the selective inhibition of sulfation of these types of substrates. Both endogenous and xenobiotic substrates are metabolized by a number of sulfotransferases (Roy, 1981; Jakoby et al., 1980); the resulting sulfate conjugates are usually rapidly excreted in urine or bile. The toxicity of the parent comoound is often lost after sulfate conjugation. Therefore, sulfation and other conjugation reactions have been considered to be detoxication reactions (Williams, 1947). However, in recent years it has become clear that in some cases sulfate conjugates are much more toxic than the parent compound.


Hydroxamic Acid Perfusion Medium Conjugation Reaction Sulfate Conjugate Hepatotoxic Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlborg, U.G. and Thunberg, T.M. (1980). Chlorinated phenols: occurrence, toxicity, metabolism and environmental impact. CRC Crit. Revs Toxicol. 7, 1–36.CrossRefGoogle Scholar
  2. Ahlborg, U.G., Lindgren, J.E. and Mercier, M. (1974). Metabolism of pentachlorophenol. Arch. Toxicol. 32, 271–281.CrossRefPubMedGoogle Scholar
  3. Andersson, B., Berggren, M. and Moldeus, P. (1978). Conjugation of various drugs in isolated hepatocytes. Drug. Metabol. Disposit. 6, 611–616.Google Scholar
  4. Baldessarini, R.J. (1975). Biological transmethylation involving S-adenosylmethionine: implications for neuropsychiatry. Int. Rev. Neurobiol. 18, 41–67.CrossRefPubMedGoogle Scholar
  5. Bernstein, S. and Solomon, S (eds) (1970). Chemical and Biological Aspects of Steroid Conjugation. Springer Verlag, Berlin, Germany.Google Scholar
  6. Braun, W.H., Young, J.D., Blau, G.E. and Gehring, P.J. (1977). The pharmacokinetics and metabolism of pentachlorophenol in rats. Toxicol. appl. Pharmacol. 41, 395–406.Google Scholar
  7. Burke, M.D., Vadi, H., Jernström, B. and Orrenius, S. (1977). Metabolism of benzo(a)pyrene with isolated hepatocytes and the formation and degradation of DNA-binding derivatives. J. Biol. Chem. 252, 6424–6431.PubMedGoogle Scholar
  8. Davis, D.C. (1975). Radioisotopic assay for rat liver sulfotransferase activity. Biochem. Pharmacol. 24, 975–978.CrossRefPubMedGoogle Scholar
  9. DeBaun, J.R., Miller, E.C. and Miller, J.A. (1970). N-Hydroxy-2-acetylaminofluorene sulfotransferase. Cancer Res. 30, 577–595.PubMedGoogle Scholar
  10. Dessypris, A.G. (1975). Testosterone sulfate, its biosynthesis, metabolism, measurement, function and properties. J. Steroid Biochen. 6, 1287–1292.CrossRefGoogle Scholar
  11. George, C.F., Blackwell, E.W. and Davies, D.S. (1974). Metabolism of isoprenaline in the intestine. J. Pharm. Pharmacol. 26, 265–267.CrossRefPubMedGoogle Scholar
  12. Götz, R., Schwarz, L.R. and Greim, H. (1980). Effects of pentachlorophenol and 2,4,6-trichlorophenol on the disposition of sulfobromophthalein and respiration of isolated liver cells. Arch. Toxicol. 44, 147–155.CrossRefPubMedGoogle Scholar
  13. Guldberg, H.C. and Marsden, C.A. (1975). Catechol-O-methyltransferase: pharmacological aspects and physiological role. Pharmacol. Revs. 27, 135–206.Google Scholar
  14. Gustafsson, J.A. and Ingelman-Sundberg, M. (1976). Multiple forms of cytochrome P-450 in rat liver microsomes. Eur. J. Biochem. 64, 35–43.CrossRefPubMedGoogle Scholar
  15. Harvey, P.R.C. and Hobkirk, R. (1977). The metabolism of estrone and estradiol and their 3-sulfates by female guinea pig liver microsomes. Steroids 30, 115–128.CrossRefPubMedGoogle Scholar
  16. Höller, M., Grochtman, W., Napp, M. and Breuer, H. (1977). Studies on the metabolism of oestrone sulphate. Biochem. J. 166, 363–371.PubMedCentralCrossRefPubMedGoogle Scholar
  17. Ingelman-Sundberg, M., Râne, A. and Gustafsson, J.A. (1975). Properties of hydroxylase systems in the human fetal liver active on free and sulfoconjugated steroids. Biochemistry 14, 429–432.CrossRefPubMedGoogle Scholar
  18. Jakoby, W.B., Sekura, R.D., Lyon, E.S., Marcus, C.J. and Wang, J.L. (1980). Sulfotransferases, in Metabolic Basis of Detoxication (eds. W.B. Jakoby, J.R. Bend and J. Caldwell), Vol. 2, chapter 11, Academic Press, New York, N.Y.Google Scholar
  19. Jollow, D.J., Thorgeirsson, S.S., Potter, W.Z., Hashimoto, M. and Mitchell, J.R. (1974). Acetaminopheninduced hepatic necrosis VI. Pharmacology 12, 251–271.CrossRefPubMedGoogle Scholar
  20. Kobayashi, K., Kimura, S. and Akitake, H. (1976). Studies on the metabolism of chlorophenols in fish, VII Bull. Jap. Soc. Sci. Fish. 42, 171–177.CrossRefGoogle Scholar
  21. Koster, H., Scholtens, E. and Mulder, G.J.(1979a). Inhibition of sulfation of phenols in vivo by 2,6-dichloro-4-nitrophenol. Med. Biol. 57, 340–344.PubMedGoogle Scholar
  22. Koster, H., Scholtens, E. and Mulder, G.J. (1979b). Inhibition of sulphation of phenolic substances by the carboxylase inhibitor bis-(p-nitrophenyl)-phosphate in the rat in vivo. Biochem. Pharmacol. 28, 2685–2686.CrossRefPubMedGoogle Scholar
  23. Koster, H., Halsema, I.C.M., Pang, K.S. and Mulder, G. J. (1981). Inhibition of sulfation of harmol in the perfused rat liver by 2,6-dichloro-4-nitrophenol. Submitted.Google Scholar
  24. Krijgsheld, K.R., Scholtens, E. and Mulder, G.J. (1981) An evaluation of methods to decrease the availabili-ty of inorganic sulphate for sulphate conjugation in the rat in vivo. Submitted.Google Scholar
  25. Lebeau, M. and Beaulieu, E. (1973). On the significance of the metabolism of steroid hormone conjugates. In Metabolic Conjugation and Metabolic Hydrolysis (ed. W.H. Fishman), vol. 3, p. 151–187, Academic Press, New York, N.Y.Google Scholar
  26. Levy, G. and Matsuzawa, T. (1967). Pharmacokinetics of salicylamide elimination in man. J. Pharmacol. exp. Therap. 156, 285–293.Google Scholar
  27. Meerman, J.H.N., Van Doorn, A.B.D. and Mulder, G.J. (1980). Inhibition of sulfate conjugation of N-hydroxy-2-acetylaminofluorene in isolated perfused rat liver and in the rat in vivo by pentachlorophenol and low sulfate. Cancer Res. 40, 3772–3779.PubMedGoogle Scholar
  28. Meerman, J.H.N. and Mulder, G.J. (1981). Prevention of hepatotoxic action of N-hydroxy-2-acetylaminofluorene in the rat by inhibition of N-O-sulfation by pentachlorophenol. Submitted.Google Scholar
  29. Mitchell, J.R., Potter, W.Z., Hinson, J.A., Snodgrass, W.R., Timbrell, J.A. and Gillette, J.R. (1975). Toxic Drug Reactions. In Handbook of exp. Pharmacol. vol. 28, part 3, p.383–419. Springer Verlag, Berlin, Germany.Google Scholar
  30. Mohan, L.C., Grantham, P.H., Weisburger, E.K., and Weisburger, J.H. (1976). Mechanisms of the inhibitory action of p-hydroxyacetanilide on carcinogenesis by N-2-fluorenylacetamide or N-hydroxy-N-2-fluorenylacetamide. J. Natl. Cancer Inst. 56, 763–768.PubMedGoogle Scholar
  31. Mulder, G.J. (1981a). Sulfation in vivo and in isolated intact cell preparations. In Sulfation of Drugs and Related Compounds (ed. G.J. Mulder), chapter 6, CRC Press, Boca Raton, FL.Google Scholar
  32. Mulder, G.J. (1981b). Generation of reactive intermediates from xenobiotics by sulfate conjugation. In Sulfation of Drugs and Related Compounds (ed. G.J. Mulder), chapter 8, CRC Press, Boca Raton, FL.Google Scholar
  33. Mulder, G.J. and Krijgsheld, K.R.(1981). The availability of cofactors for conjugation as rate limiting step for conjugation in vivo. In Nutrition and Drug Metabolism/Disposition (eds. T.C. Campbell and D.A. Roe), Marcel Dekker, New York, N.Y.Google Scholar
  34. Mulder, G.J. and Scholtens, E. (1977). Phenolsulphotransferase and UDP glucuronyltransferase from rat liver in vivo and in vitro. 2,6-Dichloro-4-nitrophenol as selective inhibitor of sulphation. Biochem. J. 165, 553–559.PubMedCentralCrossRefPubMedGoogle Scholar
  35. Pang, K.S. and Gillette, J.R. (1978). Kinetics of metabolite formation and elimination in the perfused rat liver preparation. J. Pharmacol. exp. Therap. 207, 178–194.Google Scholar
  36. Pazmino, P., Rogoff, F. and Weinshilboum, R. (1979). Inhibition of human erythrocyte phenol-0-methyltransferase in uremia. Clin Pharmacol. Therap.926, 464–472.Google Scholar
  37. Roy, A.B. (1981). Sulfotransferases. In Sulfation of Drugs and Related Compounds (ed. G.J. Mulder), chapter 5, CRC Press, Boca Raton, FL.Google Scholar
  38. Usdin, E., Borchardt, R.T. and Creveling, C.R. (eds) (1979). Transmethylation. Elsevier Biomedical Press, Amsterdam.Google Scholar
  39. Williams, R.T. (1947). Detoxication Mechanisms. Chapman and Hall, London.Google Scholar
  40. Wislocki, P.G., Borchert, P., Miller, J.A. and Miller, E.C. (1976). The metabolic activation of the carcinogen 1′-hydroxysafrole in vivo and in vitro and the electrophilic reactivities of possible ultimate carcinogens. Cancer Res. 36, 1686–1695.PubMedGoogle Scholar

Copyright information

© The Contributors 1981

Authors and Affiliations

  • Gerard J. Mulder
    • 1
    • 2
  • Ina C. M. Halsema
    • 1
    • 2
  • Henk Koster
    • 1
    • 2
  • John H. N. Meerman
    • 1
    • 2
  • K. Sandy Pang
    • 1
    • 2
  1. 1.Department of PharmacologyState University of GroningenGroningenThe Netherlands
  2. 2.Department of PharmaceuticsUniversity of HoustonHoustonUSA

Personalised recommendations