In Vivo and in Vitro Efflux of Conjugated Amines into Superfusates from Discrete Areas of the Central Nervous System of Cats and Rats

  • Gertrude M. Tyce
  • Donna L. Hammond
  • Duane K. Rorie
  • Tony L. Yaksh


We have previously found (Tyce et al, 1980) considerable amounts of an acid-hydrolyzable conjugate of dopamine (DA), presumably DA-sulfate, in the cerebrospinal fluid (CSF) of dogs following intravenous administration of L-3,4-dihydroxyphenylalanine (L-DOPA). The amounts of this DA conjugate present in the CSF were decreased when α-methyldopahydrazine, which inhibits decarboxylation of L-DOPA in peripheral tissues, was administered in addition to L-DOPA. Since this treatment could be expected to preferentially increase central stores of DOPA and DA (Melamed et al, 1980), our data suggested that the DA conjugate present in the CSF of dogs had been formed in the periphery, and transported into the brain and CSF. Amine sulfates form internal salts carrying little electrical charge at physiological pH and might therefore penetrate biological membranes more readily than the parent amines which are not easily transported across biological membranes (Jenner & Rose, 1973).


Basal Release Iced Water Disodium EDTA Sodium Metabisulfite Superfusion Chamber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Buu, N. T., Duhaime, J., Savard, C., Truong, L. and Kuchel, O. (1980). J. Neurochem. in press.Google Scholar
  2. Fuller, R. W. and Malloy, B. B. (1974). Adv. in Biochem. Psychopharmacol., 10, 195–205.Google Scholar
  3. Hammond, D. L., Tyce, G. M. and Yaksh, T. L. (1980). The Pharmacologist, 22(3), 219.Google Scholar
  4. Jenner, W. N. and Rose, F. A. (1973). Biochem. J., 135, 109–114.PubMedCentralCrossRefPubMedGoogle Scholar
  5. Johnston, J. P. (1968). Biochem. Pharmacol., 17, 1285–1297.CrossRefPubMedGoogle Scholar
  6. Melamed, E., Hefti, F. and Wurtman, R. J. (1980). Brain Res., 198, 244–248.CrossRefPubMedGoogle Scholar
  7. Tyce, G. M., Sharpless, N. S., Kerr, F. W. L. and Muenter, M. D. (1980). J. Neurochem., 34, 210–212.CrossRefPubMedGoogle Scholar
  8. Weil-Malherbe, H. (1971). In Methods of Biochemical Analysis, Suppl. Vol. (ed. D. Glick), pp. 119–152. Interscience Publishers, New York.CrossRefGoogle Scholar
  9. Yaksh, T. L. and Tyce, G. M. (1980). Brain Res., 192, 133–146.CrossRefPubMedGoogle Scholar
  10. Yang, H.-Y. T. and Neff, N. H. (1973). J. Pharmacol. Exp. Ther., 187, 365–373.PubMedGoogle Scholar

Copyright information

© The Contributors 1981

Authors and Affiliations

  • Gertrude M. Tyce
    • 1
    • 2
  • Donna L. Hammond
    • 3
  • Duane K. Rorie
    • 4
  • Tony L. Yaksh
    • 3
  1. 1.Departments of PhysiologyMayo FoundationRochesterUSA
  2. 2.Departments of BiochemistryMayo FoundationRochesterUSA
  3. 3.Departments of Neurosurgical ResearchMayo FoundationRochesterUSA
  4. 4.Departments of AnesthesiologyMayo FoundationRochesterUSA

Personalised recommendations