Central Aminergic Function and its Disturbance by Hepatic Disease: The Current Status of L-valine Pharmacotherapy in Metabolic Coma

  • P. Riederer
  • P. Kruzik
  • E. Kienzl
  • G. Kleinberger
  • K. Jellinger
  • W. Wesemann

Summary

Animal experiments and human post mortem brain analyses led to the assumption that hepatic encephalopathy may be more associated with disturbances of serotonin (5-HT) metabolism than with disorders of catecholaminergic functions. Tryptophan (TRP), 5-HT, and 5-hydroxy indole acetic acid (5-HIAA) have been found to be substantially above normal values, especially in brain stem areas. These disturbances in hepatic coma are associated with high concentrations of ammonia and glutamate. Both the high neuronal activity of 5-HT and the high concentrations of the neurotoxic ammonia may, therefore, contribute to the state of hepatic coma. However, neuronal uptake of 5-HT is decreased and 5-HT receptors appear to change their Bmax and KD values with depth of coma. Reduced activity of TRP-2,3-dioxygenase may be involved in stimulation of 5-HT synthesis. Therefore, therapeutic strategies which reduce both TRP and ammonia concentrations should be employed. One possibility is the parenteral administration of L-valine (VAL), a branched chain amino acid. Its administration to patients with liver cirrhosis reduced plasma ammonia which subsequently increased after VAL withdrawal. Patients with higher baseline levels of ammonia responded better than those with lower baseline ammonia. Such treatment has been shown to decrease TRP, 5-HT, 5-HIAA and ammonia levels in human brain tissue. Although the mechanism by which VAL exerts its action is still unknown, experimental evidence provides the following possible explanations:
  1. 1.

    VAL competes with TRP at the blood brain-barrier;

     
  2. 2.

    VAL seems to generally decrease ammonia by inhibition of a) ammonia induced reduction of protein-synthesis or b) protein breakdown Utilization of VAL in the presence of high ammonia concentrations is, therefore, enhanced and induces lower plasma levels of branched chain amino acids but higher levels of aromatic amino acids.

     
  3. 3.

    Catabolism of VAL to products involved in energy metabolism.

     

Keywords

Tyrosine Nicotin Lysine Glutamine Catecholamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, J.P., Snyder, S.H. (1975). Stereospecific binding of D-lysergic acid diethylamide (LSD) to brain membranes: Relationship to serotonin receptors. Brain Res. 94, 523–544.CrossRefGoogle Scholar
  2. Bernheimer, H., Birkmayer, W., Hornykiewicz, O. (1961). Verteilung des 5-Hydroxytryptamines (Serotonin) im Gehirn des Menschen und sein Verhalten bei Patienten mit Parkinson-Syndrom. Klin.Wschr. 39, 1056Google Scholar
  3. Birkmayer, W., Danielczyk, W., Neumayer, E., Riederer P. (1974). Nucleus ruber and L-dopa psychosis: biochemical post mortem findings. J.Neural Transm. 35, 95–116Google Scholar
  4. Bloxam, D.L., Curzon, G. (1978). A study of proposed determinants of brain tryptophan concentrations in rats after portocaval anastomosis and sham operation. J.Neurochem. 31, 1255–1263.CrossRefGoogle Scholar
  5. Cangiano, C., Calcaterra, V., Cascino, A., Capocacci A. (1976). Bound and free tryptophan plasma levels in hepatic encephalopathy. Rendic.Gastroenterol. 8, 186–189.Google Scholar
  6. Carlsson, A. (1978). Effects of low oxygen on brain monoamine metabolism. In Neurochemistry of Hypoxia, (ed.H.S.Bachelard), Proc.2nd Congr. Europ. Soc.for Neurochemistry, pp.266–270.Google Scholar
  7. Clavaria, L.E., Lascells, R.L. (1976). In vitro polarographic studies in brain oxygen uptake in simulated uremic and hepatic coma. Acta neurol.scand. 54, 256–268.CrossRefGoogle Scholar
  8. Constantino, D., Borroni, M., Ambrosino, G., Martello, P., Rizzi, C., Olivotto, A. (1978). Variazioni degli aminoacidi plasmatici in alcumi casi di necrosie ed insufficienza epatica acuta nell’ uomo. Min.Med. 69, 2355–2364.Google Scholar
  9. Cummings, M.G., Soeters, P.B., James, J.H., Klane, J.M., Fischer, J.E. (1976). Regional brain indoleamine metabolism following chronic portocaval anastomosis in the rat. J.Neurochem. 27, 501–509.CrossRefGoogle Scholar
  10. Curzon, G., Kantamaneni, B.D., Fernando, J.C., Woods, M.S., Cavanagh, J.B. (1975). Effects of chronic portocaval anastomosis on brain tryptophan, tyrosine and 5-hydroxytryptamine. J.Neurochem. 24, 1065–1070.CrossRefGoogle Scholar
  11. Davis, J.N. (1976). Brain tyrosine hydroxylation: alteration of oxygen affinity in vivo by immobilization or electroshock in the rat. J.Neurochem. 27, 211–215 (1976).CrossRefGoogle Scholar
  12. Davis, J., Carlsson, A. (1972). The effect of hypoxia on monoamine synthesis, levels and metabolism in rat brain. J.Neurochem. 19, 959–977CrossRefGoogle Scholar
  13. Delafosse, B., Bouletreau, P., Motin, J. (1977). Variation des acides amines plasmatiques au cours de hepatites graves avec encéphalopathies. 10 observations. Nouv. Presse méd. 6, 1207–1211.Google Scholar
  14. Denckla, W.D., Dewey, H.K. (1967). The determination of tryptophan in plasma, liver and urine. J.Lab.Clin.Med. 69, 160–169.Google Scholar
  15. Denizeau, F., Sourkes, T.L. (1977). Regional transport of tryptophan in rat brain. J.Neurochem. 28, 951–959.CrossRefGoogle Scholar
  16. Dodsworth, J.M., James, T.L., Cummings, M.C., Fischer, J.E. (1974). Depletion of brain norepinephrine in acute hepatic coma. Surgery 75, 811–820.Google Scholar
  17. Fazekas, J.F., Howard, E.T., Ehrmanstraut, W.R., Alman, R.M. (1956). Cerebral metabolism in hepatic insufficiency. Amer.J.Med. 21, 843–849.CrossRefGoogle Scholar
  18. Ferenci, P., Wewalka, F. (1978). Plasma amino acids in hepatic encephalopathy. J.Neural Transm. Suppl.14, 87–94Google Scholar
  19. Fernando, J.C.B., Knott, P.J., Curzon, G. (1976). The relevance of both plasma free tryptophan and insulin to rat brain tryptophan concentration. J.Neurochem. 27, 343–345.CrossRefGoogle Scholar
  20. Fernstrom, J.D., Wurtman, R.F. (1972). Brain serotonin content: physiological regulation by plasma neutral amino acids. Science 178, 414–416.CrossRefGoogle Scholar
  21. Fernstrom J.D. (1979). Diet-induced changes in plasma amino acid pattern: Effects on the brain uptake of large neutral amino acids and on brain serotonin synthesis. J.Neural Transm., Suppl.15, 55–67.Google Scholar
  22. Fischer, J.E., Baldessarini, R.J. (1976). Pathogenesis and therapy of hepatic coma. Prog. in Liver Dis. 5, 363–397.Google Scholar
  23. Fischer, J.E., Funovics, J.M., Aguirre, A., James, J.H., Keane, J.M., Wesdorp R.I.C., Yoshimura, N., Westman, T. (1975). The role of plasma amino acids in hepatic encephalopathy. Surgery 78, 276–290.Google Scholar
  24. Fischer, J.E., Funovics, J.M., Falcao, H.A., Wesdorp, R.I.C. (1976). L-Dopa in hepatic coma. Ann.Surg.183, 386–391.CrossRefGoogle Scholar
  25. Fischer J.E., Funovics, J.M., Aquirre, A., Wesdorp, R.I.C., James, J.H., Hodgman, J.K. (1977). Therapy of hepatic coma. In Münchner Konferenz über neurologisch-psychiatrische Aspekte des Komas, (eds. G. Dalle Ore, et al), Düsseldorf:Janssen, pp. 223–239.Google Scholar
  26. Fischer, D.B., Kaufmann, S. (1972). The inhibition of phenylalanine and tyrosine hydroxylase by high oxygen levels. J.Neurochem.19, 1359–1365.CrossRefGoogle Scholar
  27. Funovics, J.M., Fischer, J.E. (1978). Brain energy metabolism and alterations of transmitter profiles in acute hepatic coma. J.Neural Transm., Suppl.14, 61–67.Google Scholar
  28. Gál, E.M., Young, R.B., Sherman, A.D. (1977). Cerebral kynurenine pathway: its significance to the metabolism of tryptophan. 6.Int.Meeting of the Intern.Soc.Neurochem.Copenhagen,Denmark 21.–26.8.1977 Abstract Nr. 521,p.565.Google Scholar
  29. Gjedde, A., Lockwood, A., Duffy, T.E., Plum, F. (1978). Cerebral blood flow and metabolism in chronically hyperammonemic rats. Effect of acute ammonia challenge. Ann.Nerol.3, 325–330.CrossRefGoogle Scholar
  30. Gould S.E. (1979). The uptake of kynurenine, a tryptophan metabolite, into mouse brain. Meeting of the Brit.Pharmacol.Soc. 4.–6.4., Abstract C 74, pp 68–69.Google Scholar
  31. Gulyassy, P.F., Aviram, A., Peters, J.H. (1970). Evaluation of amino acid and protein requirements in chronic uremia. Arch.Int.Med.126, 855–859.CrossRefGoogle Scholar
  32. Hamon, M., Bourgoin, S., Morot-Gaudry, Y., Hery, F., Glowinski, J. (1974). Role of active transport of tryptophan in the control of 5-hydroxytryptamine synthesis. Adv.Biochem.Psychopharmac.11, 153–162.Google Scholar
  33. Heller, A. (1972). Neuronal control of brain serotonin. Fed. Proc.31, 81–90.Google Scholar
  34. Hirayama, C. (1971). Tryptophan metabolism in liver disease. Clin.Chim.Acta 32, 191–197.CrossRefGoogle Scholar
  35. Holm, E. (1975). Ammoniak und hepatische Enzephalopathie. Biochemie, Elektrophysiologie, Toxikologie. Stuttgart,FischerGoogle Scholar
  36. Jellinger, K., Riederer, P. (1977). Brain monoamines in metabolic (endotoxic) coma. J.Neural Transm. 41, 275–286.CrossRefGoogle Scholar
  37. Jellinger, K., Riederer, P. (1978). Brain monoamines in metabolic coma and stroke. In Advances in Neurology, (eds. J. Cervos-Navarro et al.), Vol.20, pp 535–546.Google Scholar
  38. Jellinger, K., Riederer, P., Rausch, W.D., Kothbauer, P. (1978). Brain monoamines in hepatic encephalopathy and other types of metabolic coma. J.Neural Transm.Suppl. 14, 103–120.Google Scholar
  39. Joseph, M.H., Baker, H.F., Lawson, A.M. (1978). Positive identification of kynurenine in rat and human brain. Biochem.Soc. Trans. 6, 123–126.CrossRefGoogle Scholar
  40. Joseph, M.H., Risby, D. (1975). The determination of kynurenine in plasma. Clin.Chim.Acta 63, 197–204.CrossRefGoogle Scholar
  41. Joseph, M.H., Kadam, B.V. (1979). Kynurenine: penetration to the brain, effect on brain tryptophan and 5-hydroxytryptamine metabolism and binding to plasma albumin. Brit.J.Pharmacol.Meeting of the Brit.Pharmacol.Soc. 4.–6.4., Abstract C 73,pp 67–68.Google Scholar
  42. Joseph, M.H., Baker, H.F., Crow, T.J., Riley, G.J., Risly, D. (1979). Brain tryptophan metabolism in schizophrenia: a post mortem study of metabolites on the serotonin and kynurenine pathways in schizophrenic and control subjects. Psychopharmacol. 62, 279–285.CrossRefGoogle Scholar
  43. Jouvet, M. (1969). Biogenic amines and the states of sleep. Science 163, 301–306.CrossRefGoogle Scholar
  44. Kebabian, J.W., Petzold, G.L., Greengard, P. (1972). Dopamine sensitive adenylate cyclase on the caudate nucleus of rat brain and its similarity to the “dopamine receptor”. Proc.Nat.Acad. Sci. (USA) 69, 2145–2149.CrossRefGoogle Scholar
  45. Kienzl, E., Kruzik, P., Riederer, P., Arold, N., Jellinger, K., Wesemann, W. (1980). Serotonin-receptor-binding und uptake-Studien bei hepatischer Encephalopathie.Abstract:Tag.Ges.Biol.Chem,InnsbruckGoogle Scholar
  46. Kleinberger, G., Ferenci, P. (1978). Die Beeinflussung der hepatischen Enzephalopathie durch L-Valin. In Ammoniak, Aminosäuren und hepatische Enzephalopathie, (eds. F.Wewalka, B.Dragosics), pp 207–214, G.Fischer, Stuttgart.Google Scholar
  47. Kleinberger, G., Kotzaurek, R., Pall, H., Pichler, M., Szeless, S. (1976). Parenterale Ernährung bei Coma hepaticum. Leber-Magen-Darm 6, 340–346.Google Scholar
  48. Kleinberger, G., Ferenci, P., Gassner, A., Lochs, H., Pall, H., Pichler, M. (1977). Behandlung des Coma hepaticum durch vollständige parenterale Ernährung und L-Valin. Schweiz.med. Wschr. 107, 1639.Google Scholar
  49. Knell, A.J., Davidson, A.R., Kantamaneni, B.D., Curzon, G. (1974). Dopamine and serotonin metabolism in hepatic encephalopathy. Brit. Med. J. I, 549–551.CrossRefGoogle Scholar
  50. Kruzik P., Kienzl E., Riederer P. (1980). 5-Hydroxytryptamine uptake into human brain synaptosomes in controls and patients dying from hepatic encephalopathy. In preparation.Google Scholar
  51. Lajtha, A. (1964). Protein metabolism of the nervous system. In Internat.Review of Neurobiology (eds. C.C. Pfeiffer, J.R.Smythies), Vol.6,pp 1–98, Academic Press, New York.Google Scholar
  52. Lajtha, A., Toth, J. (1974). Post mortem changes in the cerebral free amino acid pool. Brain Res. 76, 546–551.CrossRefGoogle Scholar
  53. Laursen, H., Westergaard, E. (1977). The blood-brain barrier to horseradish peroxidase in rats with porto-systemic encephalopathy. Neuropath.appl.Neurobiol.3, 20–43.CrossRefGoogle Scholar
  54. Lesch, P. (1973). Toxische Metaboliten im Gehirn von Patienten mit Leberzirrhose und porto-cavalem Shunt. Dtsch.med.Wschr.98, 1929–1931.Google Scholar
  55. Mackenzie, R.G., Trulson, M.E. (1978). Does insulin act directly on the brain to increase tryptophan levels? Neurochem.30, 1206–1208.Google Scholar
  56. Mans, A.M., Biebuyck, J.F., Saunders, S.J., Kirsch, R.E., Hawkins, R.A. (1979). Tryptophan transport across the blood-brain barrier during acute hepatic failure. J.Neurochem. 33,409–418.CrossRefGoogle Scholar
  57. Manz, H. (1976). The pathology of cerebral edema. Human Path.5, 291–313.CrossRefGoogle Scholar
  58. McMenamy, R.H., Oncley, J.T. (1958). The specific binding of l-tryptophan to serum albumin. J.Biol.Chem.233, 1435–1447Google Scholar
  59. Morgane, P.J., Stern, W.C. (1978). Serotonin in regulation of sleep. In Serotonin in Health and Disease, (ed.W.B.Hessman), Vol.2, pp 205–246. Spectrum Publ., New York.Google Scholar
  60. Moskowitz, M.A., Wurtman, R.J. (1976). Acute stroke and brain monoamines. In Cerebrovascular Diseases, (ed. P.Scheinberg), pp 153–166, Raven Press, New York.Google Scholar
  61. Munro, H.N., Fernstrom, J.D., Wurtman, R.J. (1975). Insulin, plasma amino acid imbalance, and hepatic coma. Lancet 1,722–724.CrossRefGoogle Scholar
  62. Ono, J., Mutson, D.G., Dombro, R.S., Levi, J.U., Livingstone, A., Zeppa, R. (1978). Tryptophan and hepatic coma. Gastroent.74, 196–200.Google Scholar
  63. Perry, T.L., Hansen, S., Berry, K., Mok, C., Lesk, D. (1970). Free amino acids and related compounds in biopsies of human brain. J.Neurochem. 18, 521–528.CrossRefGoogle Scholar
  64. Plum, F., Hindfelt, B. (1976). The neurological complications of liver disease. In Handbook of Clinical Neurology, (eds. P.J. Vinken, G.W.Bruyn).,Vol.25,pp349–377,North Holland,Amsterdam-New-York.Google Scholar
  65. Raskin, N.H., Fishman, R.A. (1976). Neurologic disorders in renal failure. New Engl.J.Med. 206, 204–209.CrossRefGoogle Scholar
  66. Record, C.O., Buxton, B., Chase, R.A., Curzon, G., Murray-Lyon, I.M., Williams, R. (1976). Plasma and brain amino acids in fulminant hepatic failure and their relationship to hepatic encephalopathy. Europ.J.Clin.Invest. 6, 387–394.CrossRefGoogle Scholar
  67. Riederer, P., Bamberg, E., Birkmayer, W. (1975). On the determination of free L-tryptophan. Acta vitamin.enzymol. 29, 21–24.Google Scholar
  68. Riederer, P., Jellinger, K., Rausch, W.D., Kleinberger, G., Kothbauer, P. (1978). Zur Biochemie der hepatischen Enzephalopathien. Z.Gastroent. 16, 768–777.Google Scholar
  69. Riederer, P., Jellinger, K. (1979). Brain monoamines in cerebral infarction and coma. In Pathophysiology of Cerebral Energy Metabolism, (eds.B.B.Mrśulja, Lj.M.Rakić, I.Klatzo, M.Spatz), pp 121–142, Plenum Publishing Corporation.CrossRefGoogle Scholar
  70. Riederer, P., Kleinberger, G., Jellinger, K. (1980). L-Valine: Mechanism of action on human brain in hepatic encephalopathy. 4.Int.Ammonia — Symp., Heidelberg,8.–11.5.Google Scholar
  71. Rinne, U.K., Sonninen, ̇V., Riekkinen, P., Laaksonen, H. (1973). Post mortem findings in Parkinsonian patients treated with L-DOPA: Biochemical considerations. In: Current Concepts in the Treatment of Parkinsonism, (ed.M.Yahr, Raven Press, New York), pp 211–233.Google Scholar
  72. Robinson, N., Williams, C.B. (1964). Amino acids in human brain. Clin. Chim. Acta 12, 314–317.Google Scholar
  73. Rosen, H.M., Yoshimura, N., Hodgman, J.M., Fischer, J.E. (1978). Plasma amino acid patterns in hepatic encephalopathy of differing etiology. Gastroenterology 72, 483–487.Google Scholar
  74. Siassi, F., Wang, M., Kopple, J.D., Swendseid, M.E. (1977). Plasma tryptophan levels and brain serotonin metabolism in chronically uremic rats. J.Nutr.107, 840–845.Google Scholar
  75. Siesjö, B.K. (1978). Brain energy metabolism and catecholaminergic activity in hypoxia, hypercapnia and ischemia. J.Neural Transm. Suppl. 14, 17–22.Google Scholar
  76. Smithy, A.R., Rossi-Fanell, F., Ziparo, V., James, J.H., Perelle, B.A., Fischer, J.E. (1978). Alterations in plasma and CSF amino acids, amines and metabolites in hepatic coma. Ann.Surg.187, 343–350.CrossRefGoogle Scholar
  77. Soeters, P.B., Fischer, J.E. (1976). Insulin, glucagon, amino acid imbalance and hepatic encephalopathy. Lancet 2,880–882.CrossRefGoogle Scholar
  78. Sourkes, T.L. (1978). Tryptophan in hepatic coma. J.Neural Transm. Suppl.14, 79–86.Google Scholar
  79. Sullivan, P.A., Murnaghan, D., Callaghan, N., Kantamaneni, B.D., Curzon, G. (1978). Cerebral transmitter precursors and metabolites in advanced renal disease. J.Neurol.Neurosurg.Psychiat.41, 581–588.CrossRefGoogle Scholar
  80. Tagliamonte, A., Biggio, G., Gessa, G.L. (1971). Possible role of free plasma tryptophan in controlling brain tryptophan concentration. Rivista di Farmacologia e Terapia 2, 251–255.Google Scholar
  81. Weiser, M., Riederer, P., Kleinberger, G. (1978). Human cerebral free amino acids in hepatic coma. J.Neural Transm. Suppl.14, 95–102.Google Scholar
  82. Westergaard, E. (1977). The blood-brain barrier to horseradish peroxidase under normal and experimental conditions. Acta neuropath. (Berl.) 39, 181–186.CrossRefGoogle Scholar
  83. Westergaard, E. (1978). The effect of serotonin on the blood-brain barrier to protein. J.Neural Transm. Suppl. 14, 9–15.Google Scholar
  84. Young, S.N., Lal, S., Sourkes, T.L., Feldmüller, F., Aronoff, A., Martin, J.B. (1975). Relationship between tryptophan in serum and CSF, and 5-hydroxyindoleacetic acid in CSF of man: effect of cirrhosis of liver and probenecid administration. J.Neurol. Neurosurg.Psychiat.38, 322–330.CrossRefGoogle Scholar
  85. Young, S.N., Tsang, D., Lal, S., Sourkes, T.L. (1977). Changes in the tryptophan content of excised human cerebral cortex. J.Neurochem. 28, 439–440.CrossRefGoogle Scholar
  86. Young, S.N., Lal, S. (1980). CNS Tryptamine metabolism in hepatic coma. J.Neural Transm. 47, 153–162.CrossRefGoogle Scholar
  87. Zieve, L. (1966). Pathogenesis of hepatic coma. Arch.int.Med.118, 211–233.CrossRefGoogle Scholar

Copyright information

© The Contributors 1981

Authors and Affiliations

  • P. Riederer
    • 1
  • P. Kruzik
    • 1
  • E. Kienzl
    • 1
  • G. Kleinberger
    • 2
  • K. Jellinger
    • 1
  • W. Wesemann
    • 3
  1. 1.Ludwig Boltzmann Institute of Clinical NeurobiologyLainz HospitalViennaAustria
  2. 2.Dept. of Medicine IUniversity School of MedicineViennaAustria
  3. 3.Dept. Neurochemistry, Institute of Physiol. Chem. IIUniversity Marburg/LahnWest Germany

Personalised recommendations