Advertisement

The solution structure of transfer RNA studied by proton NMR

  • Brian R. Reid
Part of the Topics in Molecular and Structural Biology book series (TMSB)

Abstract

The adaptor role of transfer RNA in protein biosynthesis was discovered some twenty years ago (Hoagland et al., 1957). Fifteen years ago the nucleotide sequence of the first tRNA molecule was determined by Holley and coworkers (Holley et al., 1965). The primary sequence led to the prediction of the well-known cloverleaf secondary structure which has been amply corroborated by the determination of over 80 tRNA sequences in the last ten years (Sprinzl et al., 1978). Elucidation of higher order folding into a defined three-dimensional structure was complicated by the difficulty in obtaining well-ordered crystals of this highly charged polymer. Six years ago Kim and Rich and coworkers at M.I.T. (Kim et al., 1974) and the Klug group at M.R.C. Cambridge (Robertus et al., 1974) reported the tertiary interactions in the crystal structure of yeast tRNAPhe at intermediate crystallographic resolution. The high-resolution refined structure has been reported by four laboratories (Jack et al., 1976; Quigley et al., 1975; Stout et al., 1978; Sussman et al., 1978); the three-dimensional folding and tertiary interactions are in virtually complete agreement in these four refined structures and are discussed in detail in chapter 5.

Keywords

Saturation Recovery Coil State Nucleic Acid Structure Tertiary Interaction tRNA Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arter, D. B. and Schmidt, P. G. (1976). Nucl. Acids Res., 3, 1437.CrossRefGoogle Scholar
  2. Bolton, P. H. and Kearns, D. R. (1976). Nature, Lond., 262, 423.CrossRefGoogle Scholar
  3. Crothers, D. M. and Cole, P. E. (1978). In Transfer RNA (ed.), S. Altman, The MIT Press, Cambridge, MA, p. 196.Google Scholar
  4. Crothers, D. M., Cole, P. E., Hilbers, C. W. and Shulman, R. G. (1974). J. Mol. Biol., 87, 63.CrossRefGoogle Scholar
  5. Dadok, J. and Sprecher, R. F. (1974). J. Magn. Reson., 13, 243.Google Scholar
  6. Daniel, W. E. and Cohn, M. (1975). Proc. natn. Acad. Sci. U.S.A., 72, 2582.CrossRefGoogle Scholar
  7. Giessner-Prettre, Q. and Pullman, B. (1970). J. Theor. Biol. 27, 87.CrossRefGoogle Scholar
  8. Giessner-Prettre, C. and Pullman, B. (1976). Biochem. biophys. Res. Commun., 70, 578.CrossRefGoogle Scholar
  9. Giessner-Prettre, C., Pullman, B., Borer, P. N., Kan, L. S. and Ts’o, P. 0. P. (1976). Biopolymers, 15, 2277.CrossRefGoogle Scholar
  10. Giessner-Prettre, C., Pullman, B. and Caillet, J. (1977). Nucl. Acids Res., 4, 99.CrossRefGoogle Scholar
  11. Hoagland, M. B., Zamecnik, P. C. and Stephenson, M. L. (1957). Biochim. biophys. Acta, 24, 215.CrossRefGoogle Scholar
  12. Holley, R. W., Apgar, J., Everett, G. A., Madison, J. T., Marquisee, M., Merrill, S. H., Penswick, J. R. and Zamir, A. (1965). Science, 147, 1462.CrossRefGoogle Scholar
  13. Hurd, R. E., Azhderian, E. M. and Reid, B. R. (1979). Biochemistry, 18, 4012.CrossRefGoogle Scholar
  14. Hurd, R. E. and Reid, B. R. (1979a). Biochemistry, 18, 4005.CrossRefGoogle Scholar
  15. Hurd, R. E. and Reid, B. R. (1979b). Biochemistry, 18, 4017.CrossRefGoogle Scholar
  16. Jack, A., Ladner, J. E. and Klug, A. (1976). J. molec. Biol., 108, 619.CrossRefGoogle Scholar
  17. Johnston, P. D. and Redfield, A. G. (1977). Nucl. Acids Res., 4, 3599.CrossRefGoogle Scholar
  18. Johnston, P. D. and Redfield, A. G. (1978). Nucl. Acids Res., 5, 3913.CrossRefGoogle Scholar
  19. Johnston, P. D. and Redfield, A. G. (1979). To be published.Google Scholar
  20. Jones, C. R. and Kearns, D. R. (1975). Biochemistry, 14, 2660.CrossRefGoogle Scholar
  21. Kan, L. S., Ts’o, P. O. P., von der Haar, F., Sprinzl, M. and Cramer, F. (1974). Biochem. biophys. Res. Commun., 59, 22.CrossRefGoogle Scholar
  22. Kan, L. S., Ts’o, P. O. P., Sprinzl, M., von der Haar, F. and Cramer, F. (1977). Biochemistry, 16, 3143.CrossRefGoogle Scholar
  23. Kastrup, R. V. and Schmidt, P. G. (1975). Biochemistry, 14, 3612.CrossRefGoogle Scholar
  24. Kastrup, R. V. and Schmidt, P. G. (1978). Nucl. Acids Res., 5, 257.CrossRefGoogle Scholar
  25. Katz, L. and Penman, S. (1966). J. molec. Biol., 15, 220.CrossRefGoogle Scholar
  26. Kearns, D. R. (1976). Prog. Nucl. Acid. Res. Mol. Biol., 18, 91.CrossRefGoogle Scholar
  27. Kearns, D. R., Patel, D. J., Shulman, R. G. and Yamane, T. (1971). J. molec. Biol., 61, 265.CrossRefGoogle Scholar
  28. Kearns, D. R. and Shulman, R. G. (1974). Acc. Chem. Res., 7, 33.CrossRefGoogle Scholar
  29. Kim, S. H., Suddath, F. L., Quigley, G. J., McPherson, A., Sussman, J. L., Wang, A., Seeman, N. C. and Rich, A. (1974). Science, 185, 435.CrossRefGoogle Scholar
  30. Kim, S. H., Sussman, J. L., Suddath, F. L., Quigley, G. J., McPherson, A., Wang, A., Seeman, N. C. and Rich, A. (1974). Proc. natn. Acad. Sci. U.S.A., 71, 4970.CrossRefGoogle Scholar
  31. Klug, A., Ladner, J. and Robertus, J. D. (1974). J. molec. Biol., 89, 511.CrossRefGoogle Scholar
  32. MacDonald, C. C., Phillips, W. D. and Penman, S. (1964). Science, 144, 1234.CrossRefGoogle Scholar
  33. Quigley, G. J., Wang, A. H. J., Seeman, N. C., Suddath, F. L., Rich, A., Sussman, J. L. and Kim, S. H. (1975). Proc. natn. Acad. Sci. U.S.A., 72, 4866.CrossRefGoogle Scholar
  34. Redfield, A. G. (1978). Methods Enzymology, 49, 253.CrossRefGoogle Scholar
  35. Reid, B. R., McCollum, L., Ribeiro, N. S., Abbate, J. and Hurd, R. E. (1979). Biochemistry, 18, 3996.CrossRefGoogle Scholar
  36. Reid, B. R., Ribeiro, N. S., Gould, G., Robillard, G., Hilbers, C. W. and Shulman, R. G. (1975). Proc. natn. Acad. Sci. U.S.A., 72, 2049.CrossRefGoogle Scholar
  37. Reid, B. R., Ribeiro, N. S., McCollum, L., Abbate, J. and Hurd, R. E. (1977). Biochemistry, 16, 2086.CrossRefGoogle Scholar
  38. Robertus, J. D., Ladner, J. E., Finch, J. T., Rhodes, D., Brown, R. D., Clark, B. F. C. and Klug, A. (1974). Nature, Lond., 250, 546.CrossRefGoogle Scholar
  39. Robillard, G. T., Tarr, C. E., Vosman, F. and Berendsen, H. J. C. (1976). Nature, Lond., 262, 363.CrossRefGoogle Scholar
  40. Robillard, G. T., Tarr, C. E., Vosman, F. and Reid, B. R. (1977a). Biochemistry, 16, 5261.CrossRefGoogle Scholar
  41. Robillard, G. T., Tarr, C. E., Vosman, F., Sussman, J. L. and Kim, S. H. (1977b). Biophys. Chem., 6, 291.CrossRefGoogle Scholar
  42. Smith, I. C. P., Yamane, T. and Shulman, R. G. (1968). Science, 159, 1360.CrossRefGoogle Scholar
  43. Smith, I. C. P., Yamane, T. and Shulman, R. G. (1969). Can. J. Biochem., 47, 480.CrossRefGoogle Scholar
  44. Sprinzl, M., Gruter, F. and Gauss, D. H. (1978). Nucl. Acids Res., 5, r15.Google Scholar
  45. Stout, C. D., Mizuno, H., Rao, S. T., Swaminathan, P., Rubin, J., Brennan, T. and Sundaralingam, M. (1978). Acta crystallogr., B34, 1529.CrossRefGoogle Scholar
  46. Sussman, J. L., Holbrook, S. R., Wade-Warrant, R., Church, G. M. and Kim, S. H. (1978). J. molec. Biol., 123, 607.CrossRefGoogle Scholar
  47. Teitelbaum, H. and Englander, S. W. (1975a). J. molec. Biol., 92, 55.CrossRefGoogle Scholar
  48. Teitelbaum, H. and Englander, S. W. (1975b). J. molec. Biol., 92, 79.CrossRefGoogle Scholar
  49. Wong, K. L., Bolton, P. H. and Kearns, D. R. (1975). Biochim. biphys. Acta., 383, 446.CrossRefGoogle Scholar

Copyright information

© The Contributors 1981

Authors and Affiliations

  • Brian R. Reid

There are no affiliations available

Personalised recommendations