Skip to main content

Abstract

In Chapter 3 we considered waves of periods measured in minutes, hours or days. In this chapter we are concerned with waves of, say, 1–30s, which are predominantly those caused by wind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. G.B. Airy, Tides and waves, Encyc. Metrop., Article 192 (1845)

    Google Scholar 

  2. H. Lamb, Hydrodynamics, 6th edn, (Cambridge University Press, 1945)

    Google Scholar 

  3. Lord Rayleigh, On progressive waves, Proc. Lond. math. Soc., 9 (1877)

    Google Scholar 

  4. G.G. Stokes, On the theory of oscillatory waves, Camb. Trans., 8 (1847)

    Google Scholar 

  5. R.G. Dean, Stream function representation of nonlinear ocean waves, J. geophys. Res., 70, No. 18 (1965)

    Google Scholar 

  6. J. Boussinesq, Théorie des ondes et de remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. pures Appl. ser 2, 17 (1872) 55–108

    Google Scholar 

  7. J. McCowan, On the solitary wave, Phil. Mag., 32 (1892) 45–58

    Article  Google Scholar 

  8. R.L. Weigel and K.E. Beebe, The design wave in shallow water, J. Waterways Div. Am. Soc. civ. Engrs, 82, WW1 (1956)

    Google Scholar 

  9. W.H. Munk, The solitary wave theory and its application to surf problems, ocean surface waves, Ann. N. Y. Acad. Sci., 51 (1949) 376–423

    Article  Google Scholar 

  10. R.A. Bagnold, Sand movement by waves: some small-scale experiments with sand at very low density, J. Instn civ. Engrs, 27 (1947) 447–69

    Article  Google Scholar 

  11. D.J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Phil. Mag. 39 (1895) 422–43

    Article  Google Scholar 

  12. R.L. Wiegel, Oceanographical Engineering (Prentice-Hall, Englewood Cliffs, N.J., 1964)

    Google Scholar 

  13. Shore Protection Manual (U.S. Army C.E.R.C., 1975)

    Google Scholar 

  14. B. Le Méhauté, An introduction to hydrodynamics and water waves, Water Wave Theories, vol. II, TR ERL 118-POL-3–2 (U.S. Dept. of Commerce, ESSA, Washington, D.C., 1969)

    Google Scholar 

  15. D.H. Swart and C.C. Loubser, Vocoidal theory for all non-breaking waves, Proceeding of the 16th Coastal Engineering Conference, Hamburg, 1978, vol. I, pp. 467–86

    Google Scholar 

  16. B. Kinsman Wind Waves, (Prentice-Hall, Englewood Cliffs, N.J., 1965)

    Google Scholar 

  17. C.L. Bretschneider, Field investigation of wave energy loss of shallow water ocean waves (U.S. Army Corps of Engineers, Beach Erosion Board) Tech. Memo No. 46 (1954)

    Google Scholar 

  18. F.E. Snodgrass, Propagation of ocean swell across the Pacific, Phil. Trans. R. Soc., A 1103 (1966) 431–97

    Article  Google Scholar 

  19. C.L. Bretschneider, Wave generation by wind, deep and shallow water, in Estuary and Coastline Hydrodynamics, ed. A.T. Ippen (McGraw-Hill, New York, 1966) pp. 133–96

    Google Scholar 

  20. C.L. Bretschneider and R.O. Reid, Changes in wave height due to bottom friction, percolation and refraction (U.S. Army Corps of Engineers, Beach Erosion Board) Tech. Memo No. 45 (1954)

    Google Scholar 

  21. C.L. Bretschneider, The generation and decay of wind waves in deep water, Trans. Am. geophys. Un., 33 (1952) 381–9

    Article  Google Scholar 

  22. G. Neumann, On ocean wave spectra and a new method of forecasting wind-generated sea (U.S. Army Corps of Engineers, Beach Erosion Board) Tech. Memo No. 43 (1953)

    Google Scholar 

  23. M. Darbyshire and L. Draper, Forecasting wind-generated sea waves, Engineering, (1963) 482–4

    Google Scholar 

  24. R. Frost, The relationship between Beaufort force wind speed and wave height, Met. Off. Sci. Paper No. 25 (H.M.S.O., 1966 )

    Google Scholar 

  25. C.L. Bretschneider, Hurricane design wave practice, J. Waterways Harbours Div. Am. Soc. civ. Engrs. 83, WW2 (1957)

    Google Scholar 

  26. T. Saville, Jr., The effect of fetch width on wave generation (U.S. Army Corps of Engineers, Beach Erosion Board) Tech. Memo No. 70 (1954)

    Google Scholar 

  27. A. Savina and C. Fons, Analyse et prevision de l’état de la mer, Houille blanche (1966) 331–6

    Google Scholar 

  28. L. Draper, Derivation of a `design wave’ from instrumental records of sea waves, Proc. Instn civ. Engrs, 26 (1963) 291–304

    Article  Google Scholar 

  29. M.J. Tucker, Analysis of records of sea waves, Proc. Instn civ. Engrs., 26 (1963) 305–16

    Article  Google Scholar 

  30. L. Draper, The analysis and presentation of wave data — a plea for uniformity, Proceeding of the 10th Coastal Engineering Conference, Tokyo, 1966

    Google Scholar 

  31. L. Draper, Revisions in wave data presentation, Proceedings of the 15th Coastal Engineering Conference, Hawaii, 1976, vol. I, pp. 3–9

    Google Scholar 

  32. D.J. Cronin, P.S. Godfrey, P.M. Hook and T.A. Wyatt, Spectral fatigue analysis for offshore structures, in Numerical Methods in Offshore Engineering (Wiley, Chichester, 1978) ch.9

    Google Scholar 

  33. L. Draper and J.S. Driver, Winter waves in the northern North Sea at 57° 30’N, 3° 00’E, recorded by M.V. Famita, National Institute of Oceanography Report A48 (1971)

    Google Scholar 

  34. M. de St. Q. Isaacson, Second approximation to gravity wave attenuation, Proc. Am. Soc. civ. Engrs., 103 WW1 (1977)

    Google Scholar 

  35. M. de St. Q. Isaacson, The viscous damping of cnoidal waves, J. Fluid Mech., 75 (1976) 449–57

    Article  Google Scholar 

  36. I.G. Jonsson and N.A. Carlsen, Experimental and theoretical investigations in an oscillatory turbulent boundary layer, J. Hydraul. Res., 14 (1976) 45–60

    Article  Google Scholar 

  37. R.P. Savage, Laboratory study of wave energy losses by bottom friction and percolation (U.S. Army Corps of Engineers, Beach Erosion Board) Tech. Memo No. 31 (1953)

    Google Scholar 

  38. R.A. Bagnold, Motion of waves in shallow water. Interaction between waves and sand bottoms, Proc. R. Soc. A 187 (1946) 1–15

    Article  Google Scholar 

  39. D.H. Swart, Offshore sediment transport and equilibrium beach profiles, Delft Hydraulics Laboratory Publication No. 131 (1974)

    Google Scholar 

  40. I.G. Jonsson, The wave friction factor revisited, Technical University of Denmark, Institute of Hydrographics and Hydraulic Engineering Progress Report 37 (1975)

    Google Scholar 

  41. K. Kajiura, A model of the bottom boundary layer in water waves, Bull. Earth Res. Inst. Tokyo Univ. 46 (1938)

    Google Scholar 

  42. J.W. Kamphuis, Friction factor under oscillatory waves, Proc. Am. Soc. civ. Engrs, 101 WW2 (1975)

    Google Scholar 

  43. B. Johns, The form of the velocity profile in a turbulent shear wave boundary layer, J. Geophys. Res., 80 (1975)

    Google Scholar 

  44. J.A. Battjes, Refraction of water waves, Proc. Am. Soc. civ. Engrs, 94, WW4 (1968)

    Google Scholar 

  45. W.H. Munk and R.S. Arthur, Wave intensity along a refracted ray, U.S. National Bureau of Standards Circular 521: Gravity Waves (1952)

    Google Scholar 

  46. Y.Y. Chao, The theory of wave refraction in shoaling water including the effects of caustics and the spherical earth, New York University Department of Meteorology and Oceanology, School of Engineering and Science, GSL Report TR-70–7 (1970)

    Google Scholar 

  47. J.R. Hardy, Some grid and projection problems in the numerical calculation of wave refraction, J. geophys. Res., 73 (1968) 7083–7

    Article  Google Scholar 

  48. O. Skovgaard, I.G. Jonsson and J.A. Bertelsen, Computations of wave heights due to refraction and friction, Proc. Am. Soc. civ. Engrs, 101, WWI (1975) 15–32; closure 102, WW1 (1976) 100–5

    Google Scholar 

  49. Y.Y. Chao, An asymptotic evaluation of the gravity wave field near a smooth caustic, J. geophys. Res., 79 (1971)

    Google Scholar 

  50. W.J. Pierson Wave behaviour near caustics in models and in nature in Waves on Beaches, ed. R.E. Meyer (Academic Press, New York, 1972) ch.4

    Google Scholar 

  51. C.L. Abernethy and G. Gilbert, Refraction of wave spectra, Hydrology Research Station Report No. INT 117 (1975)

    Google Scholar 

  52. O. Skovgaard and J.A. Bertelsen, Refraction computations for practical applications, Proceedings of the ASCE International Symposium on Ocean Wave Measurement and Analysis, New Orleans, 1974, pp. 761–73

    Google Scholar 

  53. L.R. Poole, Comparison of techniques for approximating ocean bottom topography in a wave refraction computer model, NASA Report No. NASA TN D-8050 (1975)

    Google Scholar 

  54. O. Skovgaard and M.H. Petersen, Refraction of cnoidal waves, Coastal Engng, 1 (1977) 43–61

    Article  Google Scholar 

  55. T. Karlsson, Refraction of continuous ocean wave spectra, Proc. Am. Soc. civ. Engrs, 95, WW4 (1969) 437–48

    Google Scholar 

  56. M.S. Longuet-Higgins, On the transformation of a continuous spectrum by refraction, Proc. Camb. phil. Soc. 53 (1957) 226–9

    Article  Google Scholar 

  57. W.A. Birkemeier and R.A. Dalrymple, Nearshore wave circulation induced by wind and waves, 2nd Annual Symposium of ASCE Waterways, Harbors and Coastal Engineering Division, San Francisco, 1975, vol. II, pp. 1062–81

    Google Scholar 

  58. O.C. Zienkiewicz and P. Bettess, Diffraction and refraction of surface waves using finite and infinite elements, University College of Wales, Swansea, Report C/R/274/76 (1976)

    Google Scholar 

  59. R.S. Arthur, Refraction of shallow water waves: The combined effect of currents and underwater topography, Trans. Am. geophys. Un., 31 (1950)

    Google Scholar 

  60. O. Skovgaard, and I.G. Jonsson, Current depth refraction using finite elements, Proceedings of the 15th Coastal Engineering Conference, Hawaii, 1976, vol. I, pp. 721–37

    Google Scholar 

  61. J.N. Hunt, Gravity waves in flowing water, Proc. R. Soc. A, 231 (1955) 496–504

    Article  Google Scholar 

  62. M.S. Longuet-Higgins and R.W. Stewart, The changes in amplitude of short gravity waves on steady non-uniform currents, J. Fluid Mech., 10 (1961) 565–83

    Article  Google Scholar 

  63. I.G. Jonsson, O. Skovgaard and J.D. Wang, Interaction between waves and currents, Proceedings of the 12th Coastal Engineering Conference, Washington, 1970, pp. 489–508

    Google Scholar 

  64. C.J. Galvin, Jr., Breaker type classification on three laboratory beaches, J. geophys. Res., 73 (1968) 3651–9

    Article  Google Scholar 

  65. W.G. Penney and A.T. Price, Diffraction of sea waves by breakwaters and the shelter afforded by breakwaters, Phil. Trans. R. Soc. A, 244 (1952) 236–53

    Article  Google Scholar 

  66. J.W. Johnson, Generalised wave diffraction diagrams, Proceedings of the 2nd Coastal Engineering Conference, 1952, Council for Wave Research 6–23

    Google Scholar 

  67. R.L. Weigel, Diffraction of waves by semi-infinite breakwater, Proc. Am. Soc. civ. Engrs, 88, HYI (1962) 27–44

    Google Scholar 

  68. J.C.W. Berkhoff, Computation of combined refraction and diffraction, Proceedings of the 13th Coastal Engineering Conference, Vancouver, 1972, ch. 24

    Google Scholar 

  69. R. Miche, Mouvements ondulataires des mers en profondeur constante ou décroissant, Annl Ponts Chauss. (1944) 25–78, 131–64, 270–92, 367–406

    Google Scholar 

  70. M.S. Longuet-Higgins, Longshore currents generated by obliquely incident sea waves, J. Geophys. Res. 75 (1970) 6778–89, 6790–801

    Article  Google Scholar 

  71. M.S. Longuet-Higgins and R.W. Stewart, Radiation stress in water waves; a physical discussion with applications, Deep Sea Res., 11 (1964) 529–62

    Google Scholar 

  72. I.D. James, A non-linear theory of longshore currents, Estuar. Coastal Mar, Sci., 2 (1974) 235–49

    Article  Google Scholar 

  73. D.L. Inman, R.J. Tait and C.E. Nordstrom, Mixing in the surf zone, J. Geophys. Res., 76 (1971) 3493–514

    Article  Google Scholar 

  74. D.H. Swart and C.A. Fleming, Longshore water and sediment movement, Proceedings of the 17th Coastal Engineering Conference, Sydney, 1980

    Google Scholar 

  75. A.J. Bowen, D.L. Inman and V.P. Simmons, Wave set-down and wave set-up, J. geophys. Res., 73 (1968) 2569–77

    Article  Google Scholar 

  76. A.J. Bowen, The generation of longshore currents on a plane beach, J. mar. Res., 27, 2 (1969) 206–15

    Google Scholar 

  77. I.G. Jonsson, O. Skovgaard and T.S. Jacobsen, Computation of longshore currents, Proceedings of the 14th Coastal Engineering Conference, Copenhagen, 1974, pp. 699–714

    Google Scholar 

  78. E.B. Thornton, Variation of longshore current across the surf zone, Proceedings of the 12th Coastal Engineering Conference, Washington, 1970 ch. 18

    Google Scholar 

  79. M.R. Gourlay, Non-uniform alongshore currents, Proceedings of the 15th Coastal Engineering Conference, Hawaii, 1976, pp. 701–20

    Google Scholar 

  80. M.J. Tucker, Surf beat: sea waves of 1 to 5 minutes period, Proc. R. Soc. A, 202 (1950) 565–73

    Article  Google Scholar 

  81. B.W. Wilson, Origin and effects of long period waves in ports, Permanent International Association of Navigation Congresses, 19th Congress (London) Sect. 2, Comm. 1 (1957) pp. 13–61

    Google Scholar 

  82. B.W. Wilson, The threshold of surge damage for moored ships, Proc. Instn civ. Engrs, 38 (1967) 107–34

    Article  Google Scholar 

  83. R.M. Sorensen, Investigation of ship-generated waves, Proc. Am. Soc. civ. Engrs, 93, WWI (1967) 85–99

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 1981 A. M. Muir Wood and C. A. Fleming

About this chapter

Cite this chapter

Wood, A.M.M., Fleming, C.A. (1981). Waves. In: Coastal Hydraulics. Palgrave, London. https://doi.org/10.1007/978-1-349-04506-8_3

Download citation

Publish with us

Policies and ethics