Advertisement

The Radial Flow Compressor

  • N. Watson
  • M. S. Janota
Chapter

Abstract

Throughout the history of turbocharging, the type of compressors and turbines used have reflected the general state of the art, at any particular time, in the field of turbomachinery. The very first turbochargers (chapter 2) were built with radial flow single or two-stage compressors, incorporating backswept vaned shrouded impellers (figure 3.1a). Since the Second World War, due to great advances made in the development of the axial flow compressor, a few turbochargers have been built using multi-stage axial flow compressors, for experimental purposes. However, from an economic point of view their usage as turbocharger components is not attractive and has never reached the production stage.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. B. Ferguson, The Centrifugal Compressor Stage (Butterworths, 1963 )Google Scholar
  2. 2.
    O. E. Balje, Compressor and pump performance and matching of turbo-components, J. Engng. Power (January 1962)Google Scholar
  3. 3.
    D. G. Shepherd, Principles of Turbomachinery ( Macmillan, New York, 1956 )Google Scholar
  4. 4.
    J. D. Stanitz, Some theoretical aerodynamic investigations of impellers in radial and mixed-flow centrifugal compressors, Trans. ASME, 74 (1952) 473Google Scholar
  5. 5.
    F. J. Wiesner, A review of slip factors for centrifugal impellers, ASME Publication 66-WA-FE-18 (1966)Google Scholar
  6. 6.
    U. Linsi, Experiments on the radial compressor of turbochargers, CIMAC Congress, London 1965Google Scholar
  7. 7.
    A. Whitfield, Slip factor of a centrifugal compressor and its variation with flow rate, Proc. Inst. Mech, Engrs, 188, No. 32 /74 (1974)Google Scholar
  8. 8.
    R. C. Dean and L. R. Young, The fluid dynamic design of advanced centrifugal compressor, Fluid Dynamics Institute, Dartmouth College, Hanover, USA (1976)Google Scholar
  9. 9.
    B. Eckert, Axialkompressoren and Radialkompressoren (Springer Verlag, 1953 )CrossRefGoogle Scholar
  10. 10.
    G. A. Ball, A. J. Bell and L. B. Mann, The Development of the Chrysler Automotive Centrifugal Compressor, SAE Technical Progress Series, vol. 3 (1961)Google Scholar
  11. 11.
    R. E. Morris and D. P. Kenny, High pressure ratio centrifugal compressor for small gas turbine engines, AGARD, Helicopter propulsion systems (Ottawa, June 1968 )Google Scholar
  12. 12.
    F. Dallenbach, The aerodynamic design and performance of centrifugal and mixed-flow compressors, SAE Technical Progress Series vol.3, pp. 2–30 (196)Google Scholar
  13. 13.
    A. Whitfield and F. J. Wallace, Performance prediction for automotive turbocharger compressors, Proc. Inst. Mech. Engrs, 189 (1975) 59CrossRefGoogle Scholar
  14. 14.
    S. M. Futral and C. A. Wasserbauer, Off-design performance prediction with experimental verification for a radial inflow turbine, NACA TN D-2621 (1965)Google Scholar
  15. 15.
    R. C. Pampreen, Small turbomachinery compressor and fan aerodynamics, ASME Publication 73-GT-6 (1973)Google Scholar
  16. 16.
    J. E. Coppage et al., Study of supersonic radial compressors for refrigeration and pressurization systems, WADC Technical Report 55–257, Astia Document No. AD 110467 (1956)Google Scholar
  17. 17.
    J. W. Daily and R. E. Nece, Chamber dimension effects on induced flow and frictional resistence of enclosed rotating discs, Trans. ASME J. Basic Engng., 82 (1960)Google Scholar
  18. 18.
    C. Rodgers and L. Sapiro, Design considerations for high pressure-ratio centrifugal compressor, ASME Paper 72-GT-91 (1972)Google Scholar
  19. 19.
    N. Watson and D. R. Ingham, Compressible flow in a radial vaneless diffuser, Conference on internal flows, University of Salford, Paper 8 (1971)Google Scholar
  20. 20.
    J. D. Stanitz, One dimensional compressible flow in vaneless diffusers of radial-and mixed-flow centrifugal compressors, including effects of friction, heat transfer and area change, NACA TN 2610, (Lewis Flight Propulsion Lab., 1952 )Google Scholar
  21. 21.
    J. P. Johnston and R. C. Dean, Losses in vaneless diffusers on centrifugal compressors and pumps, Trans. ASME J. Engng Power, 88, No. 1 (1966)Google Scholar
  22. 22.
    W. B. Brown and B. R. Bradshaw, Design and performance of family of diffusing scrolls with mixed-flow impeller and vaneless diffuser, NACA Report 936 (1949)Google Scholar
  23. 23.
    D. W. Holder, The transonic flow past two-dimensional aerofoils, J. R. Aero. Soc., 68 (August 1964)Google Scholar
  24. 24.
    R. C. Dean, On the unresolved fluid dynamics of the centrifugal compressor; Advanced centrifugal compressors, ASME 77–149815 (1971)Google Scholar
  25. 25.
    D. Eckardt, Detailed flow investigations within a high-speed centrifugal compressor impeller, Trans. ASME, Jl Fluid Engng., (September 1976)Google Scholar
  26. 26.
    M. W. Johnson and J. Moore, The development of wake flow in a centrifugal compressor performance, ASME Publication 78-GT-149 (1978)Google Scholar
  27. 27.
    W. Jansen, Rotating stall in a radial vaneless diffuser, Trans. ASME, J. Basic Engng, (December 1974)Google Scholar
  28. 28.
    Y. Senoo and Y. Kinoshita, Influence of inlet flow conditions and geometries of centrifugal vaneless diffusers on critical flow angle for reverse flow, Trans. ASME, 99 (March 1977)Google Scholar
  29. 29.
    C. Osborne, Turbocharging the internal combustion engine, Fluid Dynamics Institute, Short Course No. 79–1, Dartmouth College, Hanover, USA (1979)Google Scholar
  30. 30.
    D. P. Kenny, A comparison of the predicted and measured performance of high pressure ratio centrifugal compressor diffusers, ASME Publication 72-GT-54 (1954)Google Scholar
  31. 31.
    G. Sovran and E. D. Klomp, Experimentally determined optimum geometries and rectilinear diffusers with rectangular conical or annular cross section, in Fluid Mechanics of Internal Flow ( Elsevier, Amsterdam, 1967 )Google Scholar
  32. 32.
    P. W. Runstadler and F. X. Dolan, Further data on the pressure recovery performance straight-channel, plane-divergence diffusers at high subsonic Mach numbers, ASME Publication 73-FE-5 (1973)Google Scholar
  33. 33.
    C. J. Sagi and J. P. Johnston, The design and performance of two-dimensional, curved diffusers, ASME Publication 67-FE-6 (1967)Google Scholar
  34. 34.
    C. Rodgers, Radial compressor performance, SAE Progress in Technology Series, Centrifugal compressors 1–62 (April 1964)Google Scholar
  35. 35.
    R. C. Pampreen, The use of cascade technology in centrifugal compressor vaned diffuser design, ASME Publication 72-GT-39 (1972)Google Scholar
  36. 36.
    V. J. Smith, A review of the design practice and technology of radial compressor diffusers, ASME Publication 70-GT-116 (1970)Google Scholar
  37. 37.
    A. Stodola, Steam and Gas Turbines ( McGraw-Hill, New York, 1927 )Google Scholar
  38. 38.
    J. H. G. Howard and C. Osborne, A centrifugal compressor flow analysis employing a jet/wake passage flow model, ASME Publication 76-FE-21 (1976)Google Scholar
  39. 39.
    J. J. Kramer, W. M. Osborne and J. T. Hamrick, Design and test of mixed flow and centrifugal impellers, Trans. ASME, Series A 82 (1960) 127Google Scholar
  40. 40.
    D. Japikse and J. Goebel, Turbocharger compressor performance and critical flow field measurements, SAE 790315, Turbochargers and Turbocharged Engines, SP442 (1979)Google Scholar
  41. 41.
    F. Emerson and J. Horlock, The design of diffusers for centrifugal compressors, ASME paper 66-WA/GT-9 (1966)Google Scholar
  42. 42.
    E. Jenny, Über irrstationäre Vorgänge in Radial-Verdichtern, insbesondere in Aufladegruppen von Verbrennungsmotoren, Schweiz. Baurtg, 79 (1961) (46) 812–17Google Scholar
  43. 43.
    S. L. Dixon, Fluid Mechanics, Thermodynamics of Turbomachinery, 3rd ed. ( Pergamon, Oxford, 1978 )Google Scholar
  44. 44.
    W. E. Woollenweber, The turbocharger, a vital part of the engine intake and exhaust systems, SAE 700534 (1970)Google Scholar
  45. 45.
    F. J. Wallace, A. Whitfield and R. Atkey, Experimental and theoretical performance of a radial flow turbocharger compressor with inlet prewhirl, Proc. mech. Engrs, 189, No. 43 /75 (1975)Google Scholar
  46. 46.
    C. Rodgers, Variable geometry gas turbine radial compressor, ASME Publication 68-GT-63 (1968)Google Scholar
  47. 47.
    A. T. Adams, Elements of Internal Combustion Turbines Theory (Cambridge University Press, 1949 )Google Scholar
  48. 48.
    P. M. Came, The development application and experimental evaluation of a design procedure for centrifugal compressors, Proc. Inst. mech. Engrs, 192., No. 5 (1978)Google Scholar
  49. 49.
    O. C. Zienkiewicz, The Finite Element Method in Engineering Science (McGraw-Hill, 1971 )zbMATHGoogle Scholar
  50. 50.
    R. Bell and P. P. Benhain, Theoretical and experimental stress analysis of centrifugal fan impellers, J. Strain Analysis, 13, No. 3 (1978)Google Scholar
  51. 51.
    R. C. Sampson, Holographic-interferometry applications in experimental mechanics, SESA Fall Meeting, Houston, Texas (October 1969)Google Scholar
  52. 52.
    L. F. Ellison and J. M. Partridge, Vane vibration in radial flow turbochargers, turbocharging and turbochargers, Proc. Inst. Mech. Engrs. (April 1978)Google Scholar

Copyright information

© N. Watson and M. S. Janota 1982

Authors and Affiliations

  • N. Watson
    • 1
  • M. S. Janota
    • 2
  1. 1.Imperial CollegeLondonUK
  2. 2.Queen Mary CollegeLondonUK

Personalised recommendations