Advertisement

High-output Turbocharging

  • N. Watson
  • M. S. Janota
Chapter

Abstract

The demand for higher and higher power outputs from a specified size of diesel engine continues. Higher outputs may be achieved by increasing speed and/or BMEP. In the last 25 years there has been a steady increase in rated mean effective pressure (figure 1.5) but only a relatively small speed increase. There are many reasons why it is difficult to increase the speed of an engine substantially. Limitations arise due to the inertia of reciprocating parts, deterioration of volumetric efficiency, air/fuel mixing problems, etc. Some limitations are absolute, in that engine damage will result if a certain speed is exceeded; others result in a progressively deteriorating engine fuel consumption (efficiency). Furthermore different limitations affect different types (and sizes) of engine. However, the potential for increasing engine speed is rather limited, although gradual progress will be made (figure 11.1).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. S. Janota and D.H.C. Taylor, Development trends in turbocharging the medium speed diesel engine, Combust. Engine Prog (1970)Google Scholar
  2. 2.
    K. Kunberger, New BBC turbochargers, Diesel and Gas Turbine Progress Worldwide (November/December 1978 )Google Scholar
  3. 3.
    G. Zehnder and E. Meier, Exhaust gas turbochargers and systems for high-pressure charging, Proc. CIMAC (1977) paper A.8Google Scholar
  4. 4.
    D.H.C. Taylor, M. Whattam and M.S. Janota, Comparison of single and two-stage turbocharging on a medium-speed four-stroke diesel engine at high BMEP, Proc. CIMAC (1971) paper A.19Google Scholar
  5. 5.
    J.R. Grundy, L.R. Kiley and E.A. Brevick, AVCR-1360–2 High specific output-variable compression ratio engine, SAE 760051 (1976)Google Scholar
  6. 6.
    R. Miller and H.U. Lieberkerr, The Miller supercharging system for diesel and gas engines, Proc. CIMAC (1957)Google Scholar
  7. 7.
    R. Chellini, GMT uprates diesel by 40%, Diesel and Gas Turbine Progress Worldwide (January/February 1980 )Google Scholar
  8. 8.
    H. Reulein, Einfluss der Turbokühlung und des Miller-Verfahrens auf die Liestung von aufgeladenen Gasmotoren, MTZ, 31 (1970)Google Scholar
  9. 9.
    R. Kamo, Higher BMEP prospects for vehicular diesels, Paper C62/78. Turbocharging and Turbochargers Conference, Inst. Mech. Engrs (London 1978 ).Google Scholar
  10. 10.
    C.C.J. French, Taking the heat of the highly boosted diesel, SAE 690463 (1969)Google Scholar
  11. 11.
    Ruston and Hornsby Ltd, UK Patent No. 977678Google Scholar
  12. 12.
    P. Tholen and I. Killman, Investigations on highly boosted turbocharged air-cooled diesel engines, ASME Paper 77-DGP-11 (1977)Google Scholar
  13. 13.
    C.C.J. French and D.H.C. Taylor, An investigation into diesel engine operation at very high ratings, Proc. CIMAC (1975)Google Scholar
  14. 14.
    H. Zapf and G. Athenstaedt, Test results and operating data of highly supercharged medium-speed four-stroke diesel engines up to an MEP of 27 bars, Proc. CIMAC (1975)Google Scholar
  15. 15.
    E. von Schnurbein, Constant pressure turbocharging for medium-speed four-stroke engines, Paper C57/78, Turbocharging and Turbochargers Conference, Inst. Mech. Engrs (London, 1978 )Google Scholar
  16. 16.
    A. Oestergaard, Development of two-stroke uniflow-scavenged engines, Diesel and Gas Turbine Progress Worldwide (June 1979)Google Scholar
  17. 17.
    O. Syassen, Zukunftsaussichten der zweistufigen Aufladung für Zweitakt und Viertakt-Grossdieselmotoren, MTZ, 39 (1976)Google Scholar
  18. 18.
    Y. Takemoto and K. Hashimoto, Development of two-stage turbocharging system on a four-stroke medium-speed diesel engine, Proc. CIMAC (1977)Google Scholar
  19. 19.
    R. Herrmann and B. Treuil, Nouvelles perspectives de développement des moteurs diesel à 4 températures, Proc. CIMAC (1975)Google Scholar
  20. 20.
    G. Woschni, E. Beineke and H. Flenker, Calculation of the performance of one and two stage turbocharged medium speed diesel engines. Paper C53/78, Turbocharging and Turbochargers Conference, Inst. Mech. Engrs (London, 1978 )Google Scholar
  21. 21.
    E. Meier, The Miller system — a possible solution to present problems with highly charged four-stroke engines, Brown Boveri Rev. 64 (1977)Google Scholar
  22. 22.
    N. Watson, M. Marzouk and Z. Baazaari, An evaluation of two-stage turbo-charging for efficient, high-output, diesel engines, ASME Paper 78-DGP-2 (1978)Google Scholar
  23. 23.
    K. Kunberger, New diesel highlights from MAN, Diesel and Gas Turbine Progress Worldwide (January/February 1980 )Google Scholar
  24. 24.
    M.S. Ghadiri-Zareh and F.J. Wallace, Variable geometry versus two-stage turbocharging of high output diesel engines, Paper C63/78, Turbocharging and Turbochargers Conference, Inst. Mech. Engrs (London, 1978 )Google Scholar
  25. 25.
    S.G. Berenyi and C.J. Raffa, Variable area turbocharger for high output diesel engines, SAE 790064, Turbochargers and Turbocharged Engines, SP442 (1979)Google Scholar
  26. 26.
    J. Melchior and T. Andre-Talamon, Hyperbar System of high super-charging, SAE 740723 (1974)Google Scholar
  27. 27.
    T. Andre-Talamon, New aspects of turbocharger utilization with Hyperbar parallel supercharging, Paper C66/78, Turbocharging and Turbochargers Conference, Inst. Mech. Engrs (London, 1978 )Google Scholar
  28. 28.
    F.J. Wallace and G. Winkler, Very high output diesel engines - a critical comparison of two-stage turbocharged, Hyperbar and differential compound engines, SAE 770756 (1977)Google Scholar
  29. 29.
    H. Sammons and E. Chatterton, Napier Nomad aircraft diesel engine, SAE Trans., 63, No 107 (1955)Google Scholar
  30. 30.
    F.J. Wallace, The differential compound engine, SAE 670110 (1967)Google Scholar
  31. 31.
    R. Kamo and W. Bryzik, Adiabatic turbocompound engine performance prediction, SAE 780068 (1978)Google Scholar
  32. 32.
    R.J.B. Way and F.J. Wallace, Results of matching calculations for turbocharger and compound engines with reduced heat loss, SAE 790824, Diesel Engine Thermal Loading, SP 449 (September 1979)Google Scholar
  33. 33.
    C.J. Leising, G.P. Purokit, S.P. De Gray and J.G. Finegold, Waste heat recovery in truck engines, SAE 780686 (1978)Google Scholar
  34. 34.
    H. Zapf, Grenzen und Möglichkeiten eines unärmedichten Brennraumes bei Dieselmotoren, VDI-Ber., No. 238 (1975)Google Scholar
  35. 35.
    F.J. Wallace, R.J.B. Way and H. Vollmert, Effect of partial suppression of heat loss to coolant on the high output diesel engine cycle, SAE 790823, Diesel Engine Thermal Loading, SP 449 (September 1979)Google Scholar
  36. 36.
    J.H. Stang, Designing adiabatic engine components, SAE 780069 (1978)Google Scholar
  37. 37.
    M.C. Brands, J.R. Werner, J.L. Hoehne and S. Kramer, Vehicle testing of Cummins turbocompound diesel engine, SAE 810073 (1981)Google Scholar

Copyright information

© N. Watson and M. S. Janota 1982

Authors and Affiliations

  • N. Watson
    • 1
  • M. S. Janota
    • 2
  1. 1.Imperial CollegeLondonUK
  2. 2.Queen Mary CollegeLondonUK

Personalised recommendations