Commissural Connections Between the vestibular nuclei studied with the Method of Retrograde Transport of Horseradish Peroxidase

  • O. Pompeiano
  • T. Mergner
  • N. Corvaja


Labyrinthine impulses, originating from semicircular canal receptors and macular receptors of both sides, act on motoneurons innervating the extrinsic eye muscles and the body musculature via the vestibulo-ocular and the vestibulospinal reflex arcs. A close co-operation between the vestibular systems of both sides is required to produce changes in the motor output which results either in conjugated eye movements or in reciprocal patterns of responses of neck and limb extensors during the labyrinthine reflexes. There are several possibilities through which the labyrinthine input of one side may produce reciprocal changes in firing rate of contralateral vestibular neurons. However, the most likely one is that the labyrinthine input of one side is transmitted to the contralateral vestibular nuclei by commissural connections.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, W. F. (1927). Experimental-anatomical studies on the visceral bulbo-spinal pathway in the cat and guniea-pig. J. comp. Neurol., 42, 393–456CrossRefGoogle Scholar
  2. Alley, K., Baker, R. and Simpson, J. I. (1974). Brain stem afferents to the vestibulocerebellum as mapped with horseradish peroxidase tracers. Soc. Neurosci., IVth Annual Meeting, 116Google Scholar
  3. Angaut, P. and Brodai, A. (1967). The projection of the ‘vestibulo-cerebellum’ onto the vestibular nuclei in the cat. Arch. Ital. Biol., 105, 441–79PubMedGoogle Scholar
  4. Baker, R. and Berthoz, A. (1975). Is the prepositus hypoglossi nucleus the source of another vestibulo-ocular pathway? Brain Res., 86, 121–27PubMedCrossRefGoogle Scholar
  5. Baker, R., Gresty, M. and Berthoz, A. (1976). Neuronal activity in the prepositus hypoglossi nucleus correlated with vertical and horizontal eye movement in the cat. Brain Res., 101, 366–71PubMedCrossRefGoogle Scholar
  6. Brodal, A. (1952). Experimental demonstration of cerebellar connexions from the peri-hypoglossal nuclei (nucleus intercalatus, nucleus praepositus hypoglossi and nucleus of Roller) in the cat. J. Anat., 86, 110–29PubMedPubMedCentralGoogle Scholar
  7. Brodai, A. (1972). Organization of the commissural connections: anatomy. In Basic Aspects of Central Vestibular Mechanisms, Progress in Brain Research, vol. 37. (A. Brodal and O. Pompeiano, eds.), Elsevier, Amsterdam, pp. 167–76Google Scholar
  8. Brodai, A. (1974). Anatomy of the vestibular nuclei and their connections. In Vestibular System, Part 1: Basic Mechanisms, Handbook of Sensory Physiology, vol. VI/1 (H. H. Kornhuber, ed.), Springer-Verlag, New York, pp. 239–352CrossRefGoogle Scholar
  9. Brodai, A. and Pompeiano, O. (1957). The vestibular nuclei in the cat. J. Anat., 91, 438–54Google Scholar
  10. Brodai, A., Pompeiano, O. and Walberg, F. (1962). The Vestibular Nuclei and their Connections. Anatomy and Functional Correlations. Oliver and Boyd, EdinburghGoogle Scholar
  11. Brodai, A. and Torvik, A. (1957). Ober den Ursprung der sekundären vestibulo-cerebellaren Fasern bei der Katze. Eine experimentell anatomische Studie. Arch. Psychiat. Nervenkr., 195, 550–67CrossRefGoogle Scholar
  12. Cajal, S. R. y (1909–1911). Histologie dy Système Nerveux de l’Homme et des Vertébrés. Maloine, ParisGoogle Scholar
  13. Carpenter, M. B. (1960). Fiber projections from the descending and lateral vestibular nuclei in the cat. Am. J. Anat., 107, 1–22PubMedCrossRefGoogle Scholar
  14. Cohen, B. (1974). The vestibulo-ocular reflex arc. In Vestibular System, Part 1: Basic Mechanisms, Handbook of Sensory Physiology, vol. VI/1 (H. H. Kornhuber, ed.), Springer-Verlag, New York, pp, 477–540Google Scholar
  15. Corvaja, N., Grofová, I., Pompeiano, O. and Walberg, F. (1977). The lateral reticular nucleus in the cat. II. Effects of lateral reticular lesions on posture and reflex movements. Neurosci., 2, 929–43CrossRefGoogle Scholar
  16. Coulter, J. D., Mergner, T. and Pompeiano, O. (1976). Effects of static tilt on cervical spinoreticular tract neurons. J. Neurophys., 39, 45–62Google Scholar
  17. Ferraro, A., Pacella, B. L. and Barrera, S. E. (1940). Effects of lesions of the medial vestibular nucleus. An anatomical and physiological study in Macacus Rhesus monkeys. J. comp. Neurol., 73, 7–36CrossRefGoogle Scholar
  18. Furuya, N., Kawano, K. and Shimazu, H. (1976). Transcerebellar inhibitory interaction between the bilateral vestibular nuclei and its modulation by cerebello-cortical activity. Expl Brain Res., 25, 447–63CrossRefGoogle Scholar
  19. Fuse, G. (1914). Beiträge zur Anatomie des Bodens des IV. Ventrikels. Arb. Hirnanat. Inst., Zürich, 8, 213–31Google Scholar
  20. Ghelarducci, B., Pompeiano, O. and Spyer, K. M. (1974). Activity of precerebeller reticular neurones as a function of head position. Arch. Ital. Biol., 112, 98–125PubMedGoogle Scholar
  21. Graham, R. C. and Karnowsky, M. Y. (1966). The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J. Histochem. Cytochem., 14, 291–302PubMedCrossRefGoogle Scholar
  22. Gray, L. P. (1926). Some experimental evidence on the connections of vestibular mechanism in the cat. J. comp. Neurol., 41, 319–64CrossRefGoogle Scholar
  23. Graybiel, A. M. and Devor, M. (1974). A microelectrophoretic delivery technique for use with horseradish peroxidase. Brain Res., 68, 167–73PubMedCrossRefGoogle Scholar
  24. Graybiel, A. M. and Hartwieg, E. A. (1974). Some afferent connections of the oculomotor complex in the cat: an experimental study with tracer techniques. Brain Res., 81, 543–51PubMedCrossRefGoogle Scholar
  25. Gresty, M. and Baker, R. (1976). Neurons with visual receptive field, eye movement and neck displacement sensitivity within and around the nucleus prepositus hypoglossi in the alert cat. Expl Brain Res., 24, 429–33CrossRefGoogle Scholar
  26. Kasahara, N., Mano, N., Oshima, T., Ozawa, S. and Shimazu, H. (1968). Contralateral short latency inhibition of central vestibular neurons in the horizontal canal system. Brain Res., 8, 376–78PubMedCrossRefGoogle Scholar
  27. Kasahara, M. and Uchino, Y. (1971). Selective mode of commissural inhibition induced by semicircular canal afferents on secondary vestibular neurons in the cat. Brain Res., 34, 366–69PubMedCrossRefGoogle Scholar
  28. Kasahara, M. and Uchino, Y. (1974). Bilateral semicircular canal inputs to neurons in cat vestibular nuclei. Expl Brain Res., 20, 285–96CrossRefGoogle Scholar
  29. Ladpli, R. and Brodal, A. (1968). Experimental studies of commissural and reticular formation projections from the vestibular nuclei in the cat. Brain Res., 8, 65–96PubMedCrossRefGoogle Scholar
  30. Lindsay, K. M., Roberts, T. D. M. and Rosenberg, J. R. (1976). Asymmetric tonic labyrinth reflexes and their interaction with neck reflexes in the decerebrate cat. J. Physiol. Lond., 261, 583–601PubMedPubMedCentralCrossRefGoogle Scholar
  31. Mano, N., Oshima, T. and Shimazu, H. (1968). Inhibitory commissural fibers interconnecting the bilateral vestibular nuclei. Brain Res., 8, 378–82PubMedCrossRefGoogle Scholar
  32. Markham, C. H. (1968). Midbrain and contralateral labyrinth influences on brain stem vestibular neurons in the cat. Brain Res., 9, 312–33PubMedCrossRefGoogle Scholar
  33. McMasters, R. E. Weiss, A. H. and Carpenter, M. B. (1966). Vestibular projections to the nuclei of the extraocular muscles. Degeneration resulting from discrete partial lesions of the vestibular nuclei in the monkey. Am. J. Anat., 118, 163–94PubMedGoogle Scholar
  34. Mergner, T., Pompeiano, O. and Corvaja, N. (1977). Vestibular projections to the nucleus intercalatus of Staderini mapped by retrograde transport of horseradish peroxidase. Neurosci. Lett., 5, 309–13PubMedCrossRefGoogle Scholar
  35. Moffie, D. (1942). The Comparative Anatomy of the Nucleus Intercalatus (Staderini) and Adjacent Structures, Van Gorcum Co., AssenGoogle Scholar
  36. Moruzzi, G. and Pompeiano, O. (1957). Inhibitory mechanisms underlying the collapse of decerebrate rigidity after unilateral fastigial lesions. J. comp. Neurol., 107, 1–26PubMedCrossRefGoogle Scholar
  37. Pompeiano, O. (1975a). Vestibulo-spinal relationship. In The Vestibular System (R. F. Naunton, ed.), Academic Press, New York, pp. 147–84Google Scholar
  38. Pompeiano, O. (1975b). Macular input to neurons of the spinoreticulocerebellar pathway. Brain Res., 95, 351–68PubMedCrossRefGoogle Scholar
  39. Pompeiano, O. and Hoshino, K. (1977). Responses to static tilts of lateral reticular neurons mediated by contralateral labyrinthine receptors. Arch. Ital. Biol., 115, 211–36PubMedGoogle Scholar
  40. Shimazu, H. (1972). Organization of the commissural connections: physiology. In Basic Aspects of Central Vestibular Mechanisms, Progress in Brain Research, vol. 37 (A. Brodal and O. Pompeiano, eds.), Elsevier, Amsterdam, pp. 177–90Google Scholar
  41. Shimazu, H. and Precht, W. (1966). Inhibition of central vestibular neurons from the contralateral labyrinth and its mediating pathway. J. Neurophysiol., 29, 467–92PubMedGoogle Scholar
  42. Shimazu, H. and Smith, C. M. (1971). Cerebellar and labyrinthine influences on single vestibular neurons identified by natural stimuli. J. Neurophysiol., 34, 493–508PubMedGoogle Scholar
  43. Tagaki, J. (1925). Studien zur vergleichenden Anatomie des Nucleus vestibularis triangularis. II. Vergleichend anatomische Untersuchungen über den Nucleus intercalatus and Nucleus praepositus, das dorsale Langsbündel von Schütz and das Triangularis-Intercalatus-Bündel von Fuse. Arb. Neurol. Inst. Univ., Wien, 27, 235–82Google Scholar
  44. Tarlov, E. (1969). The rostral projections of the primate vestibular nuclei. An experi-mental study in macaque, baboon and chimpazee. J. comp. Neurol., 135, 27–56PubMedCrossRefGoogle Scholar
  45. Thomas, D. M., Kaufman, R. P., Sprague, J. M. and Chambers, W. W. (1956). Experimental studies of the vermal cerebellar projections in the brain stem of the cat (fastigiobulbar tract). J. Anat., 90, 371–85PubMedPubMedCentralGoogle Scholar
  46. Torvik, A. and Brodai, A. (1954). The cerebellar projection of the peri-hypoglossal nuclei (nucleus intercalatus, nucleus praepositus hypoglossi and nucleus of Roller) in the cat. J. Neuropathol. exp. Neurol., 13, 515–27PubMedCrossRefGoogle Scholar
  47. Walberg, F. (1961). Fastigiofugal fibers to the perihypoglossal nuclei in the cat. Expl Neurol., 3, 525–41CrossRefGoogle Scholar
  48. Walberg, F. (1972). Light and electron microscopical data on the distribution and termination of primary vestibular fibers. In Basic Aspects of Central Vestibular Mechanisms, Progress in Brain Research, vol. 37 (A. Brodal and O. Pompeiano, eds.), Elsevier, Amsterdam, pp. 79–88Google Scholar
  49. Walberg, F., Pompeiano, O., Brodai, A. and Jansen, J. (1962). The fastigiovestibular projection in the cat. An experimental study with silver impregnation methods. J. comp. Neurol., 118, 49–76PubMedCrossRefGoogle Scholar
  50. Wilson, V. J., Wylie, R. M. and Marco, L. A. (1968). Synaptic inputs to cells in the medial vestibular nucleus. J. Neurophysiol., 31, 176–85PubMedGoogle Scholar

Copyright information

© I. Steele Russell, M. W. van Hof and G. Berlucchi 1979

Authors and Affiliations

  • O. Pompeiano
  • T. Mergner
  • N. Corvaja

There are no affiliations available

Personalised recommendations