Interhemispheric Communication Between Neurons in Visual Cortex of the Rabbit

  • Harvey A. Swadlow
Chapter

Abstract

Whereas the physiological properties of the callosal system of the cat have been subjected to extensive investigation (see, for example, Berlucchi et al., 1967; Choudhury et al., 1965; Hubel and Weisel, 1967; Innocenti et al., 1974), those of other species have remained relatively unstudied. This chapter will review recent investigations of the visual callosal system of the rabbit. The physiological properties and the distribution of cells of origin of the corpus callosum (callosal efferent neurons) and cells which are synaptically activated by callosal input will be examined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berlucchi, G. and Rizzolatti, G. (1968). Binocularly driven neurons in visual cortex of split-chiasm cats. Science, 159, 308–10PubMedCrossRefGoogle Scholar
  2. Berlucchi, G., Gazzaniga, M. S. and Rizzolatti, G. (1967). Microelectrode analysis of transfer of visual information by the corpus callosum. Arch. Ital. Biol., 105, 583–96PubMedGoogle Scholar
  3. Bishop, P. 0., Burke, W. and Davis, R. (1962). Single-unit recording from anti-dromically activated optic radiation neurons. J. Physiol., Lond. 162, 432–50Google Scholar
  4. Bremer, F. (1958). Physiology of the corpus callosum. In The Brain and Human Behavior, vol. 36, Proc. Ass. Res. Nerv. Ment. Dis., Williams and Wilkins, Balti-more, pp. 424–48Google Scholar
  5. Choudhury, P. B., Whitteridge, D. and Wilson, M. E. (1965). The function of the callosal connections of the visual cortex. Q. Jl exp. Physiol., 50, 214–19CrossRefGoogle Scholar
  6. Doty, R. W. (1965). Conditioned reflexes elicited by electrical stimulation of the brain in macaques. J. Neurophysiol., 28, 623–40PubMedGoogle Scholar
  7. Doty, R. W. (1966). Interhemispheric transfer of conditioned reflexes established to electrical stimulation of neocortex. The Physiologist, 9, 170Google Scholar
  8. Doty, R. W. and Negrâb, N. (1972). Forebrain commissures and vision. In Handbook of Sensory Physiology vol. VII/s, Springer-Verlag, HeidelbergGoogle Scholar
  9. Fadiga, E., Innocenti, G. M., Manzoni, T. and Spidaliere, G. (1972). Transcallosal reactivity of cat trigeminal I neurons. Brain Res., 37, 368–69CrossRefGoogle Scholar
  10. Giolli, R. A. and Guthrie, M. D. (1969). The primary optic projections in the rabbit. An experimental study. J. comp Neurol., 136, 99–126PubMedCrossRefGoogle Scholar
  11. Hubel, D. H. and Weisel, T. N. (1967). Cortical and callosal connections concerned with the vertical meridian of visual fields in the cat. J. Neurophysiol, 30, 1561–73PubMedGoogle Scholar
  12. Hughes, A. (1971). Topographical relationships between the anatomy and physio-logy of the rabbit visual system. Docum. Opthal. (Den Hagg), 30, 33–159CrossRefGoogle Scholar
  13. Hughes, A. and Wilson, M. E. (1969). Callosal terminations along the boundary be-tween visual areas I and II in the rabbit. Brain Res., 12, 19–25PubMedCrossRefGoogle Scholar
  14. Innocenti, G. M. and Fiore, L. (1976). Morphological correlates of visual field transformation in the corpus callosum. Neurosci. Lett., 2, 245–52PubMedCrossRefGoogle Scholar
  15. Innocenti, G. M., Manzoni, T. and Spidalieri, G. (1974). Patterns of somesthetic messages transfered through the corpus callosum. Expl Brain Res., 19, 447–66CrossRefGoogle Scholar
  16. Lund, J. S. and Lund, R. D. (1970). The termination of callosal fibers in the para-visual cortex of the rat. Brain Res., 17, 25–45PubMedCrossRefGoogle Scholar
  17. Lund, J. S., Lund, R. S., Hendrickson, A. E., Bunt, A. H. and Fuchs, A. F. (1975). The origin of efferent pathways from the primary visual cortex, area 17 of the Macaque monkey as shown by retrograde transport of horseradish peroxidase. J. comp. Neurol., 164, 287–304PubMedCrossRefGoogle Scholar
  18. Mesulum, M. (1976). The blue reaction product in horseradish peroxidase neuro-histochemistry: incubation parameters and visibility. J. Histochem. Cytochem., 24, 1273–80CrossRefGoogle Scholar
  19. Mountcastle, V. B., Talbot, W. H. and Sakata, H. (1969). Cortical neuronal mechanisms in flutter-vibration studies in unanesthetized monkeys. Neuronal periodicity and frequency discrimination. J. Neurophysiol., 32, 452–84PubMedGoogle Scholar
  20. Phillips, C. G. (1959). Actions of antidromic pyramidal volleys on single Betz cells in the cat. Q. JI exp. Physiol., 44, 1–25CrossRefGoogle Scholar
  21. Phillips, C. G., Powell, T. P. S. and Sheperd, G.M. (1963). Responses of mitral cells to stimulation of the lateral olfactory tract in the rabbit. J. Physiol. Lond., 168, 65–88PubMedPubMedCentralCrossRefGoogle Scholar
  22. Purpura, D. P. and Girado, M. (1959). Synaptic mechanisms involved in transcallo-sal activation of corticospinal neurons. Arch. Ital. Biol., 97, 95–110Google Scholar
  23. Robinson, D. L. (1973). Electrophysiological analysis of interhemispheric relations in the second somatosensory cortex of the cat. Expl Brain Res., 18, 131–44CrossRefGoogle Scholar
  24. Rose, M. (1931). Cytoarchitektonischer Atlas der Grosshimrinde des Kaninchens. J. Psychol. Neurol., 43, 353–440Google Scholar
  25. Shatz, C. (1977). Abnormal interhemispheric connections in the visual system of Boston Siamese cats: A physiological study. J. comp. Neurol., 171, 229–46PubMedCrossRefGoogle Scholar
  26. Swadlow, H. A. (1974). Properties of antidromically activated callosal neurons and neurons responsive to callosal input in rabbit binocular cortex. Expl. Neurol., 43, 424–44CrossRefGoogle Scholar
  27. Swadlow, H. A. (1977). Relationship of the corpus callosum to visual areas I and II of the awake rabbit. Expl Neurol., 57, 516–31CrossRefGoogle Scholar
  28. Swadlow, H. A. and Waxman, S. G. (1976). Variations in conduction velocity and excitability following single and multiple impulses of visual callosal axons in the rabbit. Expl Neurol., 53, 128–50CrossRefGoogle Scholar
  29. Swadlow, H. A., Weyand, T. G. and Waxman, S. G. (1978). The cells of origin of the corpus callosum in rabbit visual cortex. Brain Res. in pressGoogle Scholar
  30. Sypert, G. W., Oakley, J. and Ward, Jr. A. A. (1970). Single-unit analysis of propagated seizures in neocortex. Expl Neurol., 28, 308–25CrossRefGoogle Scholar
  31. Thompson, J. M., Woolsey, C. B. and Talbot, S. A. (1950). Visual areas I and II of cerebral cortex of rabbit. J. NeurophysioL, 13, 277–88PubMedGoogle Scholar
  32. Towns, L. C., Giolli, R. A. and Haste, D. A. (1977). Corticocortico fiber connections of the rabbit visual cortex: a fiber degeneration study. J. comp. Neurol., 173, 537–60PubMedCrossRefGoogle Scholar
  33. Toyama, D., Matsunami, K. and Ohno, T. (1969). Antidromic identification of association, commissural and corticofugal efferent cells in cat visual cortex. Brain Res., 14, 513–17PubMedCrossRefGoogle Scholar
  34. Toyama, K., Matsunami, K. Ohno, T. and Tokashiki, S. (1974). An intracellular study of neuronal organization in the visual cortex. Expl Brain Res., 21, 45–66CrossRefGoogle Scholar
  35. Van Hof, M. W. (1970). Interocular transfer in the rabbit. Expl NeuroL, 26, 103–108CrossRefGoogle Scholar
  36. Van Hof, M. W. and Van Der Mark, F. (1976). A quantitative study on interocular transfer in the rabbit. PhysioL Behay., 17, 715–17CrossRefGoogle Scholar
  37. Waxman, S. G. and Swadlow, H. A. (1976). Ultrastructure of visual callosal axons in the rabbit. Expl Neurot, 53, 115–27CrossRefGoogle Scholar
  38. Wong-Riley, M. T. T. (1974). Demonstration of geniculocortical and callosal projection neurons in the squirrel monkey by means of retrograde axonal transport of horseradish peroxidase. Brain Res., 79, 267–72PubMedCrossRefGoogle Scholar

Copyright information

© I. Steele Russell, M. W. van Hof and G. Berlucchi 1979

Authors and Affiliations

  • Harvey A. Swadlow

There are no affiliations available

Personalised recommendations