Empirical techniques

  • Michel M. Benarie
Part of the Air Pollution Problems Series book series (AIRPP)

Abstract

Input parameters such as diffusion constants and inversion heights are the permanent basic problems of atmospheric modelling. Quite often they are inserted into the computational formulae based on the results of previous experiences made in more or less similar conditions. The next step, that of computing diffusion parameters from real-time monitoring network observations and of using them as input values, was performed by Shieh et al. (1970, 1972). They expressed the diffusion parameters as
(8.1)
with i = x, y, z and where a i (x) is the diffusion parameter at a distance x, u is the wind velocity, t is the diffusion time and α, p are constants.

Keywords

Dioxide Covariance Ozone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bankoff, S. G., and Hanzevack, E. L., Jr. (1973). Parameter updating for air pollution dispersion model. Proc. Symp. Am. Inst. Chem. Eng. Natl Meet. Air Pollut. Modelling, New Orleans, LaGoogle Scholar
  2. Bankoff, S. G. (1975). The adaptive filtering transport model for predicting and control of pollutant concentration in an urban airshed. Atmos. Environ.,9,793–808CrossRefGoogle Scholar
  3. Breiman, L., and Meisel, W. S.(1976) Empirical techniques for analyzing air quality and meteorological data, part Ill, short–term changes in ground–level ozone concentrations: an empirical analysis. US Environ. Prot. Agency, Publ. No. EPA–600/4–76–029c, 73 pp.Google Scholar
  4. Buell, C. E.(1975). Objective procedures for optimum location of air pollution observation stations. US Environ. Prot. Agency, Publ. No. EPA–650/4–75–005, 215 pp.Google Scholar
  5. Busch, N. (1973). Proc. 4th Meet. North Atlantic Treaty Organ. - Comm. Challenges Modern Soc. Expert Panel Air Pollut. Modelling, Oberursel, 28 to 30 May 1973Google Scholar
  6. Calder, K. L. (1973). Personal communication to N. Busch.Google Scholar
  7. Desalu, A. A., Gould, L. A., and Schweppe, F. C. (1974). Dynamic estimation of air pollution. Inst. Electr. Electron. Eng. Autom. Control, 19, 904–10Google Scholar
  8. Gustafson, S. A., Kortanek, K. O., and Sweigart, J. R. (1976). Numerical optimisation technique in air quality modelling. US Environ. Prot. Agency, Publ., No. EPA–600/4–76–058, 42 pp.Google Scholar
  9. Hino, M. (1973). Statistical prediction method of environmental pollution combining theory and multi-variate analysis. Proc. Jpn. Soc. Civil Eng. Tokyo Environ. Problems Symp., 3 to 4 December 1973, pp.32–6 (in Japanese)Google Scholar
  10. Hino, M.(1977).On-line prediction system of air pollution by statistical and control theories (FRAK). Proc. 4th Int. Clean Air Congr., Tokyo, 16 to 20 May 1977 pp. 334–7Google Scholar
  11. Hino, M., Mori, G., and Yoshikawa, S. (1973). Prediction of atmospheric pollution by Kalman filter. J. Jpn. Soc. Air. Pollut., 8, p. 402 (in Japanese)Google Scholar
  12. Hino, M. (1974). Trans. Jpn. Soc. Civil Eng., 224, 79–90CrossRefGoogle Scholar
  13. Hino, M., and Tajima, T. (1974). Prediction of pollutant concentration by phase-regression analysis. J. Jpn. Soc. Air Pollut., 9, 276 (in Japanese)Google Scholar
  14. Horie, Y. (1972). Air pollution modelling, simulation and control. Kansas State Univ., Manhattan, Kansas, Thesis, 174 pp.Google Scholar
  15. Horie, Y., and Fan, L. T. (1973). Air pollution forecasting by an adaptive method. Simulation, 119–25Google Scholar
  16. Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Trans. Am. Soc. Mech. Eng., Ser. D, J. Basic Eng., 82, 35–45Google Scholar
  17. Kalman,R. E., Lapidus, L., and Shapiro, R. (1960). Computer control of processes. Chem. Eng. Prog., 5655–61Google Scholar
  18. Lee, R. C. K. (1964). Optimal Estimation, Identification and Control, Mass. Inst. Technol. Press, Cambridge, Mass.Google Scholar
  19. Mehra, R. K. (1971). Identification of stochastic linear dynamic systems using Kalman filter representation. Aircraft Ind. Assoc. Am. J., 9, 28–31Google Scholar
  20. Meisel, W. S. (1976). Empirical techniques for analysing air quality and meteorological data, part I, the role of empirical methods in air quality and meteorological analysis. US Environ. Prot. Agency, Publ., No. EPA–600/4–76–029a, 66 pp.Google Scholar
  21. Meisel, W. S., and Teener, M. D. (1976). Empirical techniques, part II, feasibility study of a source-oriented empirical air quality simulation model. US Environ. Prot. Agency, Publ., No. EPA-600/4–029b, 61 pp.Google Scholar
  22. Pooler, F. J. (1961). A prediction model for mean urban pollution for use with standard wind roses. Int. J. Air Water Pollut., 4, 199–211Google Scholar
  23. Seinfeld, J. H. (1969). Mathematical models of air quality control regions, Development of Air Quality Standards (eds A. Atkisson and R. S. Gaines), Merrill, Columbus, OhioGoogle Scholar
  24. Shieh, L. J., Davidson, B., and Friend, J. P. (1970). A model of diffusion in urban atmospheres: sulphur dioxide in Greater New York. Proc. Symp. Multiple–source Urban Diffusion Models (ed. A. Stern), US Environ. Prot. Agency, Publ., No. AP–86, pp. 10–1–10–38Google Scholar
  25. Shieh, L. J., Halpern, P. K., Clemens, B. A., Wang, H. H., and Abraham, F. F. (1972). Air quality diffusion model; application to New York city. IBM J. Res. Dev., No. 3, 162–70CrossRefGoogle Scholar
  26. Takamatsu, T., Naito, M., Hiraoka, M., Kawata, K., and Mizoguchi (1971). Computer control system for preventing air pollution. Proc. 2nd Int. Clean Air Congr., Washington, D.C., 6 to 11 December 1970 (eds H. M. Englund and W. T. Beery), Academic Press, New York, pp. 1135–43Google Scholar
  27. Ulbrich, E. A. (1967). Adapredictive air pollution control for Los Angeles basin. Proc.Assoc. Comput. Mach. Annu. Symp. Appl. Comput. to Problem Urban Soc., 10 November 1967Google Scholar
  28. Wayne, L. G. (1969). Development of Air Quality Standards (eds A. Atkisson and R. S. Gaines), Merrill, Columbus, Ohio, pp. 186–99, discussionGoogle Scholar
  29. Wells, C. H. (1971). Application of modern estimation and identification techniques to chemical processes. Am. Inst. Chem. Eng. J.,17, 966–73CrossRefGoogle Scholar
  30. Wells, C. H., and Lau, R. W. J. (1971). Stochastic modelling and control of ambient air quality: a new approach. Proc. Inst. Electr. Eng. Western Electron. Show Cony., San Francisco, Calif, 24 to 27 August 1971, Paper, No. 32/5, 8 pp.Google Scholar
  31. Yokoyama, O. (1973). The development of an air pollution monitoring system. Proc. 3rd Int. Clean Air Congr., Düsseldorf 8 to 12 October 1973, VDI-Verlag, Düsseldorf, pp. C137–C139Google Scholar
  32. Yokoyama, O. (1977). The air pollution forecast and control system (APMS). Proc. 4th Int. Clean Air Congr., Tokyo, J, 16 to 20 May 1977 pp. 329–33Google Scholar

Copyright information

© Michel M. Benarie 1980

Authors and Affiliations

  • Michel M. Benarie
    • 1
  1. 1.Institut National de Recherche Chimique AppliquéeVert-le-PetitFrance

Personalised recommendations