Skip to main content

Part of the book series: Air Pollution Problems Series ((AIRPP))

  • 258 Accesses

Abstract

The boundary between the numerical advection—diffusion methods of volume elements and the multi-box models tends to be blurred. In the latter, the region to be studied is divided into cells not necessarily identical in area and height. No diffusion between the boxes is assumed; the concentration in each cell or box is considered uniform. This is perhaps the most important difference from previously outlined models where a (variable) diffusion constant had to be used. As Scriven and Fisher (1975) pointed out, in the ideal box model infinite diffusivity inside the individual box is assumed. The mass-conservation equation is solved for each of the boxes. The uniform concentration within a particular box at any time is a function of the box volume, of the rate at which material is being imported, of the emission rate, of the concentration within the box in the preceding time increment and of the residual fractions of these three terms in describing the amount of material remaining in the box. For box n, the functional relationship is, as expressed by Reiquam (1969, 1970, 1971),

(6.1)

where xn,t is the concentration, Vn.t the volume, qn.t the rate at which pollutants are advected into box n, Q n.t the emission rate within box n, rn.t the residual of x n,t-1 remaining, rn.t the residual of Qn.t remaining, p n.t the residual of remaining, all at the end of time increment, and x n.t-1 the concentration in box n at time t −1. The residual fractions are simple geometrical relationships between the resultant wind vector and the box dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrecht, F., and Grunow, J. (1935). Ein Beitrag zur Frage der vertikalen Luftzirkulation in der Grosstadt. Meteorol. Z.,52, 103–8 (in German)

    Google Scholar 

  • Benarie, M. (1978). The simple box model revisited. Atmos. Environ.,12, 1929–30

    Article  Google Scholar 

  • British Government (1945). Atmospheric pollution in Leicester. Dep. Sci. Ind. Res.,Tech. Paper, No.1, 161 pp.

    Google Scholar 

  • Calder, K. L. (1969). A narrow-plume simplification for multiple urban source models. Unpublished

    Google Scholar 

  • Cantoni, C. E., Gualdi, R., and Santomauro, L. (1975). Preliminary report about a diffusion model for Milan, Italy, urban area: Gifford–Hanna model. Proc. 6th North Atlantic Treaty Organ.–Comm. Challenges Modern Soc. Int. Tech. Meet. Air Pollut. Modelling, Frankfurt, 24 to 26 September 1975, pp. 93–124

    Google Scholar 

  • Clarke, J. F. (1964). A simple diffusion model for calculating point concentrations from multiple sources. J. Air Pollut. Control Assoc.,14, 347–52

    Article  CAS  Google Scholar 

  • Dickerson, M. H. (1975). MASCON—a mass-consistent atmospheric flux model for regions with complex topography. Lawrence Livermore Lab., Univ. Calif:, Preprint, No. UCRL-76157, Rev.1, 14 pp.

    Google Scholar 

  • Duewer, W. H., MacCracken, M. C., and Walton, J. J. (1976). The Livermore regional air quality model, II, verification and sample application to the San Francisco bay area. J. Appl. Meteorol., in the press

    Google Scholar 

  • Feldstein, M., MacCracken, M. C., and Reinisch, R. F. (1973). Development of an air pollution model for the San Francisco bay area. Bay Area Air Pollut. Control Dist., Publ., No. GI-36390, 139 pp.

    Google Scholar 

  • Friedlander, S. K., and Seinfeld, J. H. (1969). A dynamic model of photochemical smog. Environ. Sci. Technol., 3, 1175–81

    Article  CAS  Google Scholar 

  • Funabashi, N. (1973). A real-time air pollution prediction by a multi-box model. (Text in Japanese). Proc. 14th Annu. Meet. Jpn. Soc. Air Pollut., Fukushima, 6 to 8 November 1973, Paper, No. 50

    Google Scholar 

  • Gear, C. W. (1971). The automatic integration of ordinary differential equations. Commun. Assoc. Comput. Mach., 4, 176–9

    Google Scholar 

  • Georgii, H. W., Busch, E., and Weber, E. (1967). Untersuchung über die zeitliche und räumliche Verteilung der Immission-Konzentration des Kohlenmonoxid in Frankfurt am Main. Ber. Inst. Meteorol. Geophys., Univ. Frankfurt, No.11, 60 pp. (in German)

    Google Scholar 

  • Gifford, F. (1959). Computation of pollution from several sources. Int. J. Air Pollut.,2, 109

    Google Scholar 

  • Gifford, F. (1970). Atmospheric diffusion in an urban area. Proc. 2nd IRPA Conf., Brighton, 5 May 1970, 5 pp.

    Google Scholar 

  • Gifford, F. (1972). Applications of a simple urban pollution model. Proc. Conf. Urban Environ. and 2nd Conf. Biometeorol., Philadelphia, Pa, 31 October to 2 November 1972 , pp.62–3

    Google Scholar 

  • Gifford, F. (1973). The simple ATDL urban air pollution model. Proc. 4th Meet. North Atlantic Treaty Organ.–Comm. Challenges Modern Soc. Expert Panel Air Pollut. Modelling, Oberursel, 28 to 30 May 1973, pp. XVI-I–XVI-18

    Google Scholar 

  • Gifford, F. (1974a). Further ATDL urban air pollution models. Air Res.Atmos.Turbulence and Diffusion Lab., US Natl Oceanic Atmos. Admin., Oak Ridge, Tenn., Rep., No.93, 9 pp.

    Google Scholar 

  • Gifford, F. (1974b). Further comparison of urban air pollution models. Proc. 5th Meet.North Atlantic Treaty Organ.–Comm. Challenges Modern Soc. Expert Panel Air Pollut. Modelling, Roskilde, 4 to 6 June 1974 , pp. 38–1–38–9

    Google Scholar 

  • Gifford, F. A., and Hanna, S. R. (1971). Urban air pollution modelling. Proc. 2nd Int. Clean Air Congr., Washington, D.C. 6 to 11 December 1970 (eds H. M. Englund and W. T. Beery), Academic Press, New York, pp. 1146–51

    Chapter  Google Scholar 

  • Gifford, F. A. (1973). Modelling urban air pollution. Atmos. Environ., 7, 131–6

    Article  CAS  Google Scholar 

  • Goodman, T. R. (1964). Application of integral methods to transient non-linear heat transfer. Adv. Heat Transfer,51–122

    Google Scholar 

  • Gronskei, K. E. (1972). A three-dimensional transport model for air pollution in an urban area with application to sulphur dioxide concentration in Oslo. Norw. Inst. Air Res., Kjeller, Rep., No. EO 000769, 30 pp.

    Google Scholar 

  • Gronskei, K. E. (1973). A simulation of the short-term variation in the sulphur dioxide concentration in Oslo during inversion. VDI Ber.,200, 149–56

    Google Scholar 

  • Halpern, P., Simon, C., and Randall, L. (1971). Source emission and the vertically integrated mass flux of sulphur dioxide across New York city area. J. Appl. Meteorol., 10, 715–24

    Article  CAS  Google Scholar 

  • Hameed, S. (1974). A modelling multi-cell method for simulation of atmospheric transport. Atmos. Environ., 8, 1003–8

    Article  CAS  Google Scholar 

  • Hanna, S. R. (1971). A simple method of calculating dispersion from urban area sources. J. Air Pollut. Control Assoc.,21, 774–7

    Article  CAS  Google Scholar 

  • Hanna, S. R. (1973a). Urban air pollution models—why? Proc. Nordic Symp. Urban Air Pollut.Modelling, Vedbaek, 3 to 5 October 1973, 19 pp.

    Google Scholar 

  • Hanna, S. R. (1973b). Application of a simple model of photochemical smog. Proc. 3rd Int.Clean Air Congr., Düsseldorf, 8 to 12 October 1973, VDI-Verlag, Düsseldorf, pp. B72 - B74

    Google Scholar 

  • Hanna, S. R. (1978). Diurnal variation of the stability factor in the simple ATDL urbandispersion model. J. Air Pollut. Control Assoc.,28, 147–50

    Article  CAS  Google Scholar 

  • Hanna, S. R. (1973c). A simple dispersion model for the analysis of chemically reactive pollutants. Atmos. Environ.,7, 803–17

    Article  CAS  Google Scholar 

  • Hanna, S. R. (1974). Atmos. Environ.,8, 529–30

    Article  Google Scholar 

  • Hindmarsh, A. C., and Gelinas, R. J. (1971). Ordinary differential equation system solver. Lawrence Livermore Lab., Univ. Calif., Publ., No. UCID-30001

    Google Scholar 

  • Holzworth, G. C. (1972). Mixing heights, wind speeds and potential for urban air pollution throughout the contiguous United States. US Environ. Prot. Agency, Publ., No. AP-101, 118 pp.

    Google Scholar 

  • Ishikawa, Y., Yagi, Y., Oshio, T., Kure, F., and Yoneda, A. (1973). Approaches to the design of calculating analysis on air pollution in Osaka, part 3. J. Jpn. Soc. Air Pollut.,8, 514 (in Japanese)

    Google Scholar 

  • Kontnik, L. T. (1974). A multi-layer mixing cell model for the estimation of urban air pollution concentrations. Univ. North Carolina, Chapel Hill, M.S. Thesis

    Google Scholar 

  • Lamb, R. G., and Seinfeld, J. H. (1974). A simple dispersion model for the analysis of chemically reactive pollutants. Atmos. Environ., 8, 527–9

    Article  CAS  Google Scholar 

  • Leahy, D. M. (1975). An application of simple advective pollution model to the city of Edmonton. Atmos. Environ.,9, 817–23

    Article  Google Scholar 

  • Lebedeff, S. A., and Hameed, S. (1975). Study of atmospheric transport over area sources by an integral method. Atmos. Environ.,9, 333–8

    Article  CAS  Google Scholar 

  • MacCracken, M. C., Crawford, T. V., Peterson, K. R., and Knox, J. B. (1971). Development of a multi-box air pollution model and initial verification for the San Francisco bay area. Lawrence Livermore Lab., Univ. Calif, Rep., No. UCRL-73348, 96 pp.

    Google Scholar 

  • MacCracken, M. C. (1972). The initial application of a multi-box air pollution model to the San Francisco bay area. Lawrence Livermore Lab., Univ. Calif., Rep., No. UCRL-73944, 8 pp.

    Google Scholar 

  • MacCracken, M. C., Wuebbles, D. J., Walton, J. J., Duewer, W. H., and Grant, K. E. (1976). The Livermore regional air quality model, I, concept and development. Lawrence Livermore Lab., Univ. Calif., Preprint, No. UCLRL-77475, Pt. 1, Rev. 2, 76 pp.; submitted for publication to J. Appl. Meteorol.

    Google Scholar 

  • Miller, M. E., and Holzworth, G. C. (1967). An atmospheric diffusion model for metropolitan areas. J. Air Pollut. Control Assoc.,17, 46–50

    Article  CAS  Google Scholar 

  • Nicholson, S. (1975). A pollution model for street level. Atmos. Environ., 9, 19–31.

    Article  CAS  Google Scholar 

  • Okamoto, S., et al. (1976). Air quality simulation by multi-box model, I, application to the calculation of carbon monoxide concentration, II, analysis of photochemical air pollution. J. Jpn. Soc. Air Pollut., 11 (in Japanese)

    Google Scholar 

  • Olsson, L. E. (1973). Proc. 4th Meet. North Atlantic Treaty Organ. — Comm. Challenges Modern Soc. Expert Panel Air Pollut. Modelling, Oberursel, 28 to 30 May 1973 discussion

    Google Scholar 

  • Ragland, K. (1973). Multiple-box model for dispersion of air pollutants from area sources. Atmos. Environ.,7, 1017–32

    Article  Google Scholar 

  • Ragland, K. W., Dennis, R. L., and Wilkening, K. E. (1975). Boundary-layer model for transport of urban air pollutants. Proc. Natl. Meet. Am. Inst. Chem. Eng., New York, 18 March 1975, Paper, No. 47e

    Google Scholar 

  • Randerson, D. (1970). A numerical experiment in simulating the transport of sulphur dioxide through the atmosphere. Atmos. Environ.,4, 615–22

    Article  CAS  Google Scholar 

  • Reiquam, H. E. (1969). Construction and evaluation of an airshed-episode model for air resource management. Oregon State Univ., Ph.D. Thesis, 100 p.

    Google Scholar 

  • Reiquam, H. E. (1970). An atmospheric transport and accumulation model for airsheds. Atmos.Environ.,4, 233–7

    Article  Google Scholar 

  • Reiquam, H. E. (1971). Preliminary trial of a box model in the Oslo airshed. Proc. 2nd Int. Clean Air Congr., Washington, D.C., 6 to I1 December 1970 (eds H. M. Englund and W. T. Beery), Academic Press, New York, pp. 1131–5

    Chapter  Google Scholar 

  • Roberts, P. J. W., Roth, P. M., and Nelson, C. L. (1971). Contaminant emission in the Los Angeles basin—their sources, rates and distribution. Syst. Appl. Inc., Rep., No. 71-SAI-6

    Google Scholar 

  • Rose, A. H., Smith, R., McMichael, W. F., and Kouse, R. E. (1964). Comparison of auto exhaust emission from two major cities. J. Air Pollut. Control Assoc.,15, 362–6

    Article  Google Scholar 

  • Santomauro, L., Gualdi, R., and Tebaldi, G. (1977). Air pollution behaviour in Milano, Italy, metropolitan area through a diffusion model. Proc. 4th Int. Clean Air Congr., Tokyo, 16 to 20 May 1977, pp. 251–4

    Google Scholar 

  • Schlichting, H. (1968). Boundary Layer Theory, McGraw-Hill, New York, chapter 10, 647 pp.

    Google Scholar 

  • Scriven, R. A., and Fisher, B. E. A. (1975). The long-distance transport of airborne material and its removal by deposition and washout, I, II. Atmos. Environ.,9, 49–68

    Article  CAS  Google Scholar 

  • Sheleikhovski, G. V. (1949). Smoke pollution of towns. US Natl Sci. Found. and US Dep. Commerce, Publ., 203 pp. (Isr. Programme Sci. Transl., 1961 )

    Google Scholar 

  • Shiozawa, K., Ootaki, A., and Okatomo, S. (1973). A multiple-box model for estimating air pollution in urban areas. Bull. Sci. Eng. Res. Lab., Waseda Univ.,61, 40–7 (in Japanese)

    Google Scholar 

  • Sklarew, R. (1973). Personal communication to S. R. Hanna

    Google Scholar 

  • Slade, D. H. (1967). Modelling air pollution in the Washington, D.C., to Boston megalopolis. Science, 157, 1304–7

    Article  CAS  Google Scholar 

  • Smith, M. E. (1961). The concentration and residence time of pollutants in the atmosphere. Proc. Int. Symp. Chem. Reactions Lower Upper Atmos., San Francisco, Stanford Res. Inst., Adv. Papers, pp. 273–86

    Google Scholar 

  • Summers, P. W. (1976). An application of a simple advective model to the city of Edmonton. Atmos. Environ., 10, 567–9

    Article  Google Scholar 

  • Tennekes, H. (1976). Observations on the dynamics and statistics of the simple box models with a variable inversion lid. Proc. 3rd. Symp. Atmos. Turbulence, Diffusion Air Quality, Raleigh, N. C., 19 to 22 October 1976, Am. Meteorol. Soc., Boston, Mass., pp. 397–402

    Google Scholar 

  • Velds, C. A. (1972). Air pollution episodes and mathematical models. Proc. 3rd Meet. North Atlantic Treaty Organ.–Comm. Challenges Modern Soc. Expert Panel Air Pollut. Modelling, Paris, 2 to 3 October 1972, pp. XIV-1–XIV-10

    Google Scholar 

  • Wayne, L., Danchik, R., Weisburd, M., Kokin, A., and Stein, A. (1971). Modelling photochemical smog on a computer for decision making. J. Air Pollut. Control Assoc.,21, 334–40

    Article  CAS  Google Scholar 

  • Wayne, L. G., Kokin, A., and Weisburd, M. I. (1973). Controlled evaluation of the reactive environmental simulation model (REM), vol. I, US Environ. Prot. Agency, Final Rep., No. EPA–R5–73–013a, PB–220, 160 pp.

    Google Scholar 

  • Weisburd, M., Wayne, L. G., Danchik, R., and Kokin, A. (1971). Development of a simulation model for estimating level concentrations of photochemical pollutants. Syst. Dey. Corp., Santa Monica, Calif, Rep., 191 pp. (Contract, No. CPA-70–151)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 1980 Michel M. Benarie

About this chapter

Cite this chapter

Benarie, M.M. (1980). Multi-box models. In: Urban Air Pollution Modelling. Air Pollution Problems Series. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-03639-4_6

Download citation

Publish with us

Policies and ethics