Skip to main content

The Taylor-Vortex Membrane Oxygenator

  • Chapter
Artificial Organs

Part of the book series: Strathclyde Bioengineering Seminars ((KESE))

  • 23 Accesses

Summary

Experiments on the oxygen transport in a Taylor-vortex membrane oxygenator have shown that it is a highly efficient mass transfer device. A theoretical estimate of the haemolysis rate, based on a mathematical model for flow in a Taylor-vortex system, has shown that high shear stresses will be the main limitation in the design of this oxygenator. Setting an upper limit to the average wall shear stresses, a design analysis indicates that highest possible rotational speed and long cylinders give the best overall performance. Experimental experience suggests that practical difficulties limit rotational speed to 600 – 800 rev/min and the cylinder length to 40 – 60 cm, which results in a mean diameter of 30 – 35 cm and an annular gap of 3 – 5 mm for a full size oxygenator. The clinical acceptance of the Taylor-vortex oxygenator will depend upon whether a possible reduction in haemolysis can outweigh the drawbacks of large priming volume and overall size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blackshear, P. L. (1972). In Y. C. Fung, N. Perrone and M. Anliker (Eds.),Biomechanics, Prentice-Hall, Englewood Cliffs, New Jersey, pp. 501–528.

    Google Scholar 

  • Burkhalter, J. E. and Koschmieder, E. L. (1973). Steady supercritical Taylor-vortex flow. J. Fluid Mech., 58, no. 3, 547–560.

    Article  Google Scholar 

  • Coles, D. (1965). Transition in circular Couette flow. J. Fluid Mech., 21, no. 3, 385–425.

    Article  Google Scholar 

  • Drinker, P. A., Bartlett, R. H., Bialer, R. M. and Noyes, B. S. (1969). Augmenta- tion of membrane gas transfer by induced secondary flows. Surgery, 66, 775–781.

    PubMed  CAS  Google Scholar 

  • Galletti, P. M., Richardson, P. D., Snider, M. T. and Friedman, L. I. (1972). A standardized method for defining the overall gas transfer performance of artificial lungs. Trans. Amer. Soc. Artif Int. Organs, 18, 350–368.

    Article  Google Scholar 

  • Gaylor, J. D. S. and Smeby, L. C. (1975). The Taylor-vortex membrane oxygena-tor: Design analysis based on a predictive correlation for oxygen transfer.Advances in Oxygenator Design, Seminar in Copenhagen.

    Google Scholar 

  • Hill, J. D., Iatridis, A., O’Keefe, R. and Kitrilakis, S. (1974). Technique for achieving high gas exchange rates in membrane oxygenation. Trans. Amer. Soc. Artif. Int. Organs, 20, 249.

    Google Scholar 

  • Keller, K. H. (1971). Effect of fluid shear on mass transport in flowing blood. Fed. Proc., 30, no. 5, 1591–1599.

    PubMed  CAS  Google Scholar 

  • Lilleâsen, P. (1976). Scand. J. Thorac. Cardiovasc. Surg. (in press).

    Google Scholar 

  • Peirce, E. C. (1973). The Mount Sinai J. of Med., 40 2, 119–134.

    Google Scholar 

  • Schlichting, H. (1968). Boundary Layer Theory 6th ed., McGraw-Hill, New York, pp. 500–508.

    Google Scholar 

  • Smeby, L. C. (1976). Ph.D. Thesis, Bioeng. Unit, Univ. of Strathclyde.

    Google Scholar 

  • Smeby, L. C. and Gaylor, J. D. S. (1974). Further development of the Taylor-vortex membrane oxygenator. Eur. Soc. Artif Organs, 1, 62–66.

    Google Scholar 

  • Smeby, L. C. and Grimsrud, L. (1974). Theoretical investigation of mass transfer in membrane oxygenators. Med. Biol. Engng., 12, 698–706.

    Article  CAS  Google Scholar 

  • Snyder, H. A. (1961). Experiments on the stability of spiral flow at low axial Reynolds numbers. Proc. Roy. Soc. London, A, 265, 198–214.

    Article  Google Scholar 

  • Sutera, S. P. and Mehrjardi, M. H. (1975). Deformation and fragmentation of human red blood cells in turbulent shear flow. Biophys. J., 15, 1–10.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1977 Bioengineering Unit, University of Strathclyde

About this chapter

Cite this chapter

Smeby, L.C. (1977). The Taylor-Vortex Membrane Oxygenator. In: Kenedi, R.M., Courtney, J.M., Gaylor, J.D.S., Gilchrist, T., Gerard, S.M. (eds) Artificial Organs. Strathclyde Bioengineering Seminars. Palgrave, London. https://doi.org/10.1007/978-1-349-03458-1_9

Download citation

Publish with us

Policies and ethics