Advertisement

Experimental Membrane Oxygenators with Convective Mixing for Gas Transfer Augmentation

  • J. D. S. Gaylor
  • K. Gilroy
  • R. Maini
  • A. McNair
  • H. Y. Ton
Chapter
Part of the Strathclyde Bioengineering Seminars book series (KESE)

Summary

Principle of operation, design and oxygenation performance of three membrane oxygenators employing convective mixing for enhanced gas transfer are described. Two oxygenators are of curved rectangular channel geometry, one with vortex formation induced by pressure driven flow and the second with vortices generated by torsional oscillation of the channel. The third oxygenator is of the capillary membrane type incorporating a chamber which functions as a mixing stage and a blood pump. The efficiencies of the units are compared with existing membrane oxygenators and design optimisation of the most promising system is presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartlett, R. H., Drinker, P. A., Burns, N. E., Fong, S. W. and Hyans, T. (1972). The toroidal membrane oxygenator: Design, performance and prolonged bypass testing of a clinical model. Trans. Amer. Soc. Artif. Int. Organs, 18, 369.CrossRefGoogle Scholar
  2. Bellhouse, B. J., Bellhouse, F. H., Curl, C. M., MacMillan, T. I., Gunning, A. J., Spratt, E. H., MacMurray, S. B. and Nelems, J. M. (1973). A high efficiency membrane oxygenator and pulsatile pumping system, and its application to animal trials. Trans. Amer. Soc. Artif. Int. Organs, 19, 72.CrossRefGoogle Scholar
  3. Chang, H. K. and Mockros, L. F. (1971). Convective dispersion of blood gases in curved channel exchangers. Amer. Inst. Chem. Eng. J., 17, 541.CrossRefGoogle Scholar
  4. Dean, W. R. (1928). Fluid motion in a curved channel. Proc. Roy. Soc. (London),A, 121, 402.CrossRefGoogle Scholar
  5. Drinker, P. A., Bartlett, R. H., Bialer, R. M. and Noyes, B. S. (1969). Augmentation of membrane gas transfer by induced secondary flows. Surgery, 66, 775.PubMedGoogle Scholar
  6. Galletti, P. M., Richardson, P. D., Snider, M. T. and Friedman, L. I. (1972). A standardised method for defining the overall gas transfer performance of artificial lungs. Trans. Amer. Soc. Artif. Int. Organs, 18, 359.CrossRefGoogle Scholar
  7. Gaylor, J. D. S., Murphy, J. F., Caprini, J. A., Zuckerman, L. and Mockros, L. F. (1973). Gas transfer and thrombogenesis in an annular membrane oxygenator with active blood mixing. Trans. Amer. Soc. Artif. Int. Organs, 19, 516.CrossRefGoogle Scholar
  8. Gilroy, K. (1976). Secondary flow augmented mass transfer in annular membrane oxygenators. Ph.D. Thesis, University of Strathclyde, Glasgow.Google Scholar
  9. Gilroy, K., Brighton, E. and Gaylor, J. D. S. (1977). The influence of fluid vortices on mass transfer in a curved channel artificial membrane lung. Amer. Inst. Chem. Eng. J., 23, 106.CrossRefGoogle Scholar
  10. Hill, J. D., Iatridis, A., O’Keefe, R. and Kitrilakis, S. (1974). Technique for achieving high gas exchange rates in membrane oxygenation. Trans. Amer, Soc. Artif. Int. Organs, 20, 249.Google Scholar
  11. Mockros, L. F. and Weissman, M. H. (1971). The artificial lung, in J. H. U. Brown,J. E. Jacobs, and L. Stark, (Eds.), Biomedical Engineering, Davis Company,California, p. 325. Reid, W. H. (1958). On the stability of viscous flow in a curved channel. Proc. Roy. Soc. (London), A 244, 186.Google Scholar
  12. Smeby, L. C. and Grimsrud, L. (1974). Theoretical investigation of mass transfer in membrane oxygenators. Med. BioL Engng., 12, 698.CrossRefGoogle Scholar
  13. Ton, H. Y. (1975). Design of a tubular membrane oxygenator with integral pumping. M.Sc. Thesis, University of Strathclyde, Glasgow.Google Scholar

Copyright information

© Bioengineering Unit, University of Strathclyde 1977

Authors and Affiliations

  • J. D. S. Gaylor
  • K. Gilroy
  • R. Maini
  • A. McNair
  • H. Y. Ton

There are no affiliations available

Personalised recommendations