Quasi-Thermodynamic Stability Theory

  • Bernard H. Lavenda


The problem of stability lies at the very root of nonlinear thermodynamic processes. Instabilities that cause dynamic transitions in open systems are responsible for the qualitative difference between linear and nonlinear thermodynamics. In linear thermodynamics, the symmetry and positive definite forms of the matrices of certain quadratic forms prohibit particular forms of system motion and guarantee the stability of the non-equilibrium process. In nonlinear thermodynamics, this may no longer be true and consequently the problem of stability arises. Furthermore, we expect the symmetries of the phenomenological coefficient matrices to be related to the type of motion that is executed by the non-equilibrium process.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blaquière, A. (1966). Nonlinear System Analysis, Academic Press, New York.Google Scholar
  2. Glansdorff, P., Nicolis, G. and Prigogine, I. (1974). The thermodynamic stability theory of non-equilibrium states. Proc. natn. Acad. Sci. U.S.A., 71, 197–199.CrossRefGoogle Scholar
  3. Glansdorff, P. and Prigogine, I. (1971). Thermodynamic Theory of Structure, Stability, and Fluctuations, Wiley—Interscience, London.Google Scholar
  4. Guillemin. E. A. (1953). Introductory Circuit Theory, Wiley, New York.Google Scholar
  5. Johnson, M. H. (1951). Phys. Rev., 84, 566.CrossRefGoogle Scholar
  6. Lavenda, B. H. (1972). Concepts of stability and symmetry in irreversible thermodynamics I. Found. Phys., 2, 161–179.CrossRefGoogle Scholar
  7. Lavenda, B. H. (1973). Thermodynamics of nonlinear, interacting irreversible processes II. Found. Phys., 3, 53–88.CrossRefGoogle Scholar
  8. Liapounov, A. M. (1892). Probleme générale de la stabilité du mouvement. Ann. Fac. Sci. Toulouse.Google Scholar
  9. Maxwell, J. C. (1860). Papers 1, 377.Google Scholar
  10. Minorsky, N. (1947). Introduction to Non-linear Mechanics, J. W. Edwards, Ann Arbor, Michigan.Google Scholar
  11. Minorsky, N. (1962). Nonlinear Oscillations, Van Nostrand, Princeton.Google Scholar
  12. Minorsky, N. (1969). Theory of Nonlinear Control Systems, McGraw-Hill, New York.Google Scholar
  13. Poincaré, H. (1892). Les Méthodes Nouvelles de la Mécanique Céleste, vol. 1, Gauthiers-Villars, Paris.Google Scholar
  14. Rayleigh, Lord (J. W. Strutt) (1877). Theory of Sound, 1 ed., Macmillan, London.Google Scholar
  15. Thomson, W. and Tait, P. G. (1886). Treatise on Natural Philosophy, Cambridge University Press, Cambridge.Google Scholar
  16. Tolman, R. C. (1938). The Principles of Statistical Mechanics, Oxford University Press, London.Google Scholar
  17. Truesdell, C. (1962). The mechanical basis of diffusion. J. chem. Phys., 37, 2336–2344.CrossRefGoogle Scholar
  18. Whittaker, E. T. (1944). Analytical Dynamics, Dover Pub., New York.Google Scholar
  19. Ziegler, H. (1968). Principles of Structural Stability, Blaisdell, Waltham, Mass.Google Scholar

Copyright information

© Bernard H. Lavenda 1978

Authors and Affiliations

  • Bernard H. Lavenda
    • 1
  1. 1.Istituto di Fisica Sperimentale della Facoltà di ScienzeUniversità di NapoliItaly

Personalised recommendations