The Effect of Cyclic Amp on Membrane-Bound Protein-Kinases and Phosphatases in Mammalian Tissues

  • R. Rodnight
  • M. Weller
Chapter
Part of the Biological Council book series (BCSDA)

Abstract

Protein kinases, activated by cyclic AMP, occur in several locations in the mammalian cell. They mediate the transfer of the γ-phosphoryl group of ATP to serine hydroxyl groups in cellular proteins which may or may not be enzymes. The most widely investigated kinase of this nature is that involved in the control of glycogen metabolism [1] and in this case, the acceptors are enzymes. In the nucleus non-enzymic proteins, including histones, have been identified as acceptors for the nuclear protein kinase [2]. Protein kinase-like activity also occurs in cell membrane fragments [3] and in neurotubular sub-units [4] but in these latter two cases the nature of the acceptor proteins are unknown. In the cytoplasm, nucleus and probably in the membrane, protein phosphatases occur in close association with the kinases and their acceptors [1, 5, 6]. These and other macromolecular complexes involved in protein phosphorylation and dephosphorylation may prove to be of fundamental importance in regulating a variety of cellular processes.

Cyclic AMP

Adenosine, 3′5′ (cyclic) monophosphate.

ATPase

Adenosine triphosphatase.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Holzer, H.; Adv. Enzymol.; 32, (1969) 297.Google Scholar
  2. 2.
    Langan, T. A.; J. biol. Chem.; 244, (1969) 5763.Google Scholar
  3. 3.
    Weller, M. and Rodnight, R.; Nature, Lond.; 225, (1970) 187.CrossRefGoogle Scholar
  4. 4.
    Goodman, D. B. P., Rasmussen, H., Di Bella, F. and Guthrow, C. E. Jr.; Proc. Nat. Acad. Sci. U.S.A.; 67, (1970) 652.CrossRefGoogle Scholar
  5. 5.
    Meisler, M. H. and Langan, T. A.; J. biol. Chem.; 244, (1969) 4961.Google Scholar
  6. 6.
    Weller, M. and Rodnight, R.; Biochem. J.; 124, (1971) 393.CrossRefGoogle Scholar
  7. 7.
    Agren, G.; Uppsala Universitets Arsskrift.; 5, (1958) 5.Google Scholar
  8. 8.
    Rodnight, R.; In: ‘Handbook of Neurochemistry’; 5. Ed. A. Lajtha. Plenum Press, New York, (1971). In Press.Google Scholar
  9. 9.
    Heald, D. J.; Biochem. J.; 66, (1957) 659.CrossRefGoogle Scholar
  10. 10.
    Mcllwain, H. and Rodnight, R.; ‘Practical Neurochemistry’; J. & A. Churchill, London, (1962) 155.Google Scholar
  11. 11.
    Trevor, A. J. and Rodnight, R; Biochem. J.; 95, (1965) 889.CrossRefGoogle Scholar
  12. 12.
    Jones, D. A. and Rodnight, R.; Biochem. J.; 121, (1971) 597.CrossRefGoogle Scholar
  13. 13.
    Reddington, M. and Rodnight, R.; Unpublished observations.Google Scholar
  14. 14.
    Ahmed, K., Judah, J. D. and Wallgren, H.; Biochim, biophys. Acta.; 69, (1963) 428.CrossRefGoogle Scholar
  15. 15.
    Rodnight, R. and Lavin, B. E.; Biochem. J.; 101, (1966) 495.CrossRefGoogle Scholar
  16. 16.
    Kakiuchi, S., Rall, T. W. and Mcllwain, H.; J. Neurochem.; 16, (1969) 485.CrossRefGoogle Scholar
  17. 17.
    Rodnight, R.; Biochem. J.; 120, (1970) 1.CrossRefGoogle Scholar
  18. 18.
    Rodnight, R., Weller, M. and Goldfarb, P. S. G.; J. Neurochem.; 16, (1969) 1591.Google Scholar
  19. 19.
    Weller, M.; M. Phil Thesis; (1969) London University.Google Scholar
  20. 20.
    Miyamoto, E., Kuo, J. F. and Greengard, P.; J. biol. Chem.; 244, (1969) 6395.Google Scholar
  21. 21.
    Weller, M. and Rodnight, R.; (1971b) Unpublished.Google Scholar
  22. 22.
    Decsi, L. and Rodnight, R.; J. Neurochem.; 12, (1965) 791.CrossRefGoogle Scholar
  23. 23.
    DeRobertis, E., Rodriguez de Lovez Arnaiz, G., Alberici, M., Butcher, R. W. and Sutherland, E. W.; J. biol. Chem.; 242, (1967) 3487.Google Scholar
  24. 24.
    Nakao, T., Tashima, K., Nagano, K. and Nakao, M.; Biochem. biophys. Res. Commun.; 19, (1965) 755.CrossRefGoogle Scholar
  25. 25.
    Weller, M. and Rodnight, R.; Biochem. J. 111, (1968) 16 P.CrossRefGoogle Scholar
  26. 26.
    Mcllwain, H.; (1971) This symposium, p.237.Google Scholar
  27. 27.
    Rall, T. W. and Gilman, A. G.; Neurosciences Res. Prog. Bull.; 8, (1970) 225.Google Scholar
  28. 28.
    Butcher, R. W. and Sutherland, E. W.; J. biol. Chem.; 237, (1962) 1244.Google Scholar
  29. 29.
    Sedgwick, B. and Hubscher, G.; Biochim. biophys. Acta; 106, (1965) 63.CrossRefGoogle Scholar
  30. 30.
    Stanbury, J. B., Morris, M. C., Corrigan, H. J. and Larithe, W. E.; Endocrinology; 67, (1960) 353.CrossRefGoogle Scholar
  31. 31.
    Fanburgh, B. and Gergly, J.; J. biol. Chem.; 240, (1965) 2721.Google Scholar
  32. 32.
    Rubin, B. and Katz, A.; Science; 158, (1967) 1189.CrossRefGoogle Scholar
  33. 33.
    Mcllwain, H. and Bachelard, H. S.; In: ‘Biochemistry and the Central Nervous System’; 4th Ed. J. & A. Churchill, London, 1971.Google Scholar
  34. 34.
    Bonting, S. L.; In: ‘Membranes and Transport’ Ed. E. E. Bittar. Wiley-Interscience, London, 1970, p. 343.Google Scholar
  35. 35.
    Alexander, D. R. and Rodnight, R.; Biochem. J.; 119, (1970) 44 P.CrossRefGoogle Scholar
  36. Alexander, D. R.; Ph.D. Thesis; London University, (1971).Google Scholar
  37. 37.
    Orloff, J. and Handler, J.; Am. J. Med.; 42, (1967) 757.CrossRefGoogle Scholar
  38. 38.
    Baker, P. F., Hodgkin, A. L. and Shaw, T. I.; J. Physiol.; 164, (1962) 330.CrossRefGoogle Scholar
  39. 39.
    Caldwell, P. C.; Physiol. Rev.; 48, (1968) 1.Google Scholar
  40. 40.
    Kanazawa, T., Saito, M. and Tomomura, Y.; J. Biochem. (Tokyo); 67, (1970) 693.Google Scholar

Copyright information

© Institute of Biology Endowment Fund 1971

Authors and Affiliations

  • R. Rodnight
    • 1
  • M. Weller
    • 1
  1. 1.Department of Biochemistry, Institute of PsychiatryBritish Postgraduate Medical Federation, University of LondonUK

Personalised recommendations