Cholinergic inhibitory mechanism in the cerebral cortex

  • V. K. Bhargava
Chapter

Abstract

Numerous investigations have been concerned with demonstrating the role of chemical substances, especially acetylcholine, in central synaptic transmission. The results are conclusive for Renshaw cells, but are only suggestive for the cerebral cortex.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amassian, V. E., Waller, H. J. and Macy, Jr. J. (1964). ‘Neural mechanism of the primary somatosensory evoked potentials’, Ann. N. Y. Acad. Sci., 112, 5–32PubMedCrossRefGoogle Scholar
  2. Bhargava, V. K. (1974). ‘Blockade by eserine of the cerebral cortical effects of alloferine— a further evidence of cortical cholinergic inhibitory mechanism’, Jap. j. Pharmac., 24, 1–4CrossRefGoogle Scholar
  3. Bhargava, V. K., Horton, R. W. and Meldrum B. S. (1970). ‘Long-lasting convulsant effect on the cerebral cortex of Naja naja venom’, Br. J. Pharmac., 39, 455–461CrossRefGoogle Scholar
  4. Bhargava, V. K. and Meldrum, B. S. (1969). ‘The strychnine like action of curare and related compounds on the somatosensory evoked responses of the rat cortex’, Br. J. Pharmac., 37, 112–122CrossRefGoogle Scholar
  5. Bhargava, V. K. and Meldrum, B. S. (1971). ‘Blockade by eserine of the cerebral cortical effects of strychnine and curare’, Nature, 230, 152Google Scholar
  6. Chang, H. T. (1953). ‘Similarity in action between curare and strychnine on cortical neurones’, J. Neurophysiol., 14, 23–28Google Scholar
  7. Colonnier, M. (1966). ‘The structural design of the neocortex’, in Brain and Conscious Experience, (Eccles, J. C., Ed.) 1–23, Springer, New YorkGoogle Scholar
  8. Curtis, D. R., Hösli, L. and Johnston, G. A. R. (1967). ‘Inhibition of spinal neurones by glycine’, Nature, 215, 1502–1503PubMedCrossRefGoogle Scholar
  9. Curtis, D. R., Hösli, L. Johnston, G. A. R. and Johnston, I. H. (1968). ‘The hyperpolarization of spinal motoneurones by glycine and related aminoacids’, Expl Brain. Res., 5, 235–258CrossRefGoogle Scholar
  10. Feldberg, W., Malcolm, J. L. and Sherwood, S. L. (1956). ‘Some effects of tubocurarine on the electrical activity of cats’ brain’, J. Physiol. Lond., 132, 130–145PubMedPubMedCentralCrossRefGoogle Scholar
  11. Kelly, J. S. and Krnjevié, K. (1968). ‘Effect of gamma aminobutyric acid and glycine on cortical neurones’, Nature, 219, 1380–1381PubMedCrossRefGoogle Scholar
  12. Krnjevié, K. and Phillis, J. W. (1961). ‘Sensitivity of cortical neurones to acetylcholine’, Experientia, 17, 469CrossRefGoogle Scholar
  13. Krnjevié, K. and Phillis, J. W. (1963). ‘Acetylcholine sensitive-cells in the cerebral cortex’, J. Physiol., Lond., 166, 296–327CrossRefGoogle Scholar
  14. Phillis, J. W. and York, D. H. (1967a). ‘Cholinergic inhibition in the cerebral cortex’, Brain. Res., 5, 517–520PubMedCrossRefGoogle Scholar
  15. Phillis, J. W. and York, D. H. (1967b). ‘Strychnine Vock of neural and drug induced inhibition in the cerebral cortex’, Nature, 216, 922–923PubMedCrossRefGoogle Scholar
  16. Phillis, J. W. and York, D. H. (1968). ‘Pharmacological studies on a cholinergic inhibition in the cerebral cortex’, Brain Res. 10, 297–306PubMedCrossRefGoogle Scholar
  17. Szentagothai, J. (1964). ‘The use of degeneration methods in investigations of short neurones and neuronal connexions’, in Degeneration patterns in the nervous system, Progress in brain Research Vol. 14, (Singer, M. and Schade, J. P., Eds.) 1–32, Elsevier, AmsterdamGoogle Scholar

Copyright information

© The Contributors 1976

Authors and Affiliations

  • V. K. Bhargava
    • 1
  1. 1.Department of PharmacologyH.P. Medical CollegeSimlaIndia

Personalised recommendations