Advertisement

Superconducting Materials

  • R. A. Kamper
Part of the Macmillan Engineering Evaluations book series (MECS)

Abstract

The superconducting state is attained by certain metals and alloys at very low temperatures. Its most striking characteristic, for which it was named, is the total vanishing of electrical resistance, but other unusual properties which could also have great technological significance will be discussed later in this chapter. The main block to widespread exploitation of the phenomenon is of course the inconvenience of maintaining a device at the required low temperature. This is becoming less severe with the easy availability of liquid helium and the development of compact refrigerators. Several hundred laboratories now routinely use superconducting electromagnets to generate flux densities up to 10 tesla without dissipation of power. Some magnets are very large, such as one on the hydrogen bubble chamber at the Argonne National Laboratory, with a bore of 5 metres.(1) A 2 000-kW electric motor, with superconducting windings, is already being tested at Fawley power station.(2) A linear electron accelerator, comprising a chain of superconducting microwave cavities over 150-m long, is under construction at Stanford University.(3)

Keywords

Magnetic Flux Superconducting State Josephson Junction Tunnel Junction Physical Review Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J R Purcell, Cryogenics & Industrial Gases Vol 4, No 6, p 64 (1969).Google Scholar
  2. 2.
    A D Appleton, Science, Vol 5, No 4, p 41 (1969).Google Scholar
  3. 3.
    W M Fairbank, Proceedings of the first International Cryogenic Engineering Conference, Tokyo & Kyoto, 1967, p 1 (Heywood, London, 1968 ).Google Scholar
  4. 4.
    R A Kamper, Cryogenics, Vol 9, No 1, p 20 (1969).CrossRefGoogle Scholar
  5. 5.
    G Arrhenius, E Corenzwit, R Fitzgerald, et al, Proceedings of the US National Academy of Science, Vol 61, No 2, p 621 (1968).CrossRefGoogle Scholar
  6. 6.
    B W Roberts, Progress in Cryogenics, Vol 4, p 159 (1964).Google Scholar
  7. 7.
    B W Roberts, NBS Technical Note 408 (1966).Google Scholar
  8. 8.
    B W Roberts, NBS Technical Note 482 (1969).Google Scholar
  9. 9.
    H Kammerlingh Onnes, Communications of the Physics Laboratory of the University of Leiden, No 119b; 120b; 122b. (1911).Google Scholar
  10. 10.
    J Bardeen, L N Cooper, and J R Schrieffer, Physical Review, Vol 108, p 1175 (1957)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    E A Lynton, ‘Superconductivity’ (Methuen, London, and Wiley, New York, 1962 )Google Scholar
  12. 12.
    M Tinkham, ‘Superconductivity’ (Gordon & Breach, New York, 1965 ).Google Scholar
  13. 13.
    P G de Gennes, ‘Superconductivity of Metals and Alloys’ (Benjamin, New York, 1966 ).Google Scholar
  14. 14.
    G G Kuper, ‘An Introduction to the Theory of Superconductivity’ (Clarendon Press, Oxford, 1968 ).Google Scholar
  15. 15.
    R D Parks (editor), ‘Superconductivity’ (Dekker, New York, 1969 ).Google Scholar
  16. 16.
    P R Wallace (editor), ‘Superconductivity’ (Gordon Si Breach, New York, 1969 ).Google Scholar
  17. 17.
    D J Quinn and W B Ittner, Journal of Applied Physics, Vol 33, p 748 (1962).CrossRefGoogle Scholar
  18. 18.
    S C Collins, unpublished.Google Scholar
  19. 19.
    A B Pippard, Advances in Electronics and Electron Physics, Vol 6, p 1 (1954).CrossRefGoogle Scholar
  20. 20.
    D C Mattis and J Bardeen, Physical Review, Vol 111, p 412 (1958).zbMATHCrossRefGoogle Scholar
  21. 21.
    J P Turneaure and N T Viet, Applied Physics Letters, Vol 16, p 333 (1970).CrossRefGoogle Scholar
  22. 22.
    S L Wipf, Proceedings of the 1968 Summer Study on Superconducting Devices and Accelerators, Brookhaven, p 511 (1969).Google Scholar
  23. 23.
    W Meissner and R Ochsenfeld, Naturwissenschaften, Vol 21, 787 (1933).CrossRefGoogle Scholar
  24. 24.
    C J Gorter and H B G Casimir, Physica, Vol 1, p 306 (1934).zbMATHCrossRefGoogle Scholar
  25. 25.
    H Trauble and U Essmann, Journal of Applied Physics, Vol 39, p 4052 (1968).CrossRefGoogle Scholar
  26. 26.
    A A Abrikosov, Soviet Physics, JETP, Vol 5, p 1174 (1957).Google Scholar
  27. 27.
    D Saint-James and P G de Gennes, Physic Letters, Vol 7, p 306 (1963).CrossRefGoogle Scholar
  28. 28.
    A M Clogston, Physical Review Letters, Vol 9, p 266 (1962).CrossRefGoogle Scholar
  29. 29.
    C J Gorter, Physics Letters, Vol 1, p 69 (1962).CrossRefGoogle Scholar
  30. 30.
    Y B Kim, C F Hempstead, and A R Strnad, Physical Review, Vol 131, p 2486 (1963).CrossRefGoogle Scholar
  31. 31.
    A R Kantrowitz and Z J J Stekly, Applied Physics Letters, Vol 6, p 56 (1965).CrossRefGoogle Scholar
  32. 32.
    P F Smith, M N Wilson, C R Walters, and J D Lewin, Proceedings of the 1968 Summer Study on Superconducting Devices and Accelerators, Brookhaven, p 913 (1969).Google Scholar
  33. 33.
    H London, Physics Letters, Vol 6, p 162 (1963).CrossRefGoogle Scholar
  34. 34.
    C P Bean, Physical Review Letters, Vol 8, p 250 (1962).zbMATHCrossRefGoogle Scholar
  35. 35.
    A S Clorfeine, Proceedings of the IEEE, Vol 52, p 844 (1964).CrossRefGoogle Scholar
  36. 36.
    P Bura, Proceedings of the IEEE, Vol 54, p 687 (1966).CrossRefGoogle Scholar
  37. 37.
    W H Louisell, ‘Coupled Mode and Parametric Electronics’ (Wiley, New York, 1960 ).Google Scholar
  38. 38.
    V Buckel and R Hilsch, Zeitschrift fur Physik, Vol 132,, p 420 (1952); Vol 138, p 109 (1954).Google Scholar
  39. 39.
    M Strongin, R S Thompson, O F Kammerer, and J E Crow, Physical Review, Vol Bl, p 1 078 (1970).CrossRefGoogle Scholar
  40. 40.
    D A Buck, Proceedings of the IRE, Vol 44, p 482 (1956).CrossRefGoogle Scholar
  41. 41.
    L L Burns, Proceedings of the IEEE, Vol 52, p 1 164 (1964). I Giaever, Physical Review Letters, Vol 5, p 147 (1960).Google Scholar
  42. 42.
    I Giaever, Physical Review Letters, Vol 5, p 147 (1960).Google Scholar
  43. 43.
    A H Dayem and R J Martin, Physical Review Letters, Vol 8, p 246 (1962).CrossRefGoogle Scholar
  44. 44.
    Y Goldstein, B Abeles, and R W Cohen, Physical Review, Vol 151, p 349 (1966).CrossRefGoogle Scholar
  45. 45.
    G B Donaldson, Revue Generale d’Electricite, to be published.Google Scholar
  46. 46.
    B D Josephson, Physics Letters, Vol 1, p 251 (1962).zbMATHCrossRefGoogle Scholar
  47. 47.
    B D Josephson, Reviews of Modern Physics, Vol 36, p 216 (1964).CrossRefGoogle Scholar
  48. 48.
    B D Josephson, Advances in Physics, Vol14, p 419 (1965).CrossRefGoogle Scholar
  49. 49.
    J E Zimmerman and A H Silver, Physical Review, Vol 141, p 367 (1966).CrossRefGoogle Scholar
  50. 50.
    J M Rowell, Physical Review Letters, Vol11, p 200 (1963).CrossRefGoogle Scholar
  51. 51.
    J E Zimmerman, P Thiene, and J T Harding, Journal of Applied Physics, Vol 41, p 1 572 (1970).CrossRefGoogle Scholar
  52. 52.
    J E Zimmerman and N V Frederick, Applied Physics Letters, to be published.Google Scholar
  53. 53.
    D N Langenberg, D J Scalapino, and B N Taylor, Proceedings of the IEEE, Vol 54, p 560 (1966).CrossRefGoogle Scholar
  54. 54.
    J E Zimmerman, J A Cowen, and A H Silver, Applied Physics Letters, Vol 9, p 353 (1966).CrossRefGoogle Scholar
  55. 55.
    D G McDonald, A S Risley, J D Cupp, and K M Evenson, Applied Physics Letters, to be published.Google Scholar
  56. 56.
    S Shapiro, Physical Review Letters, Vol 11, p 80 (1963).CrossRefGoogle Scholar
  57. 57.
    B N Taylor, W H Parker, and D N Langenberg, Reviews of Modern Physics, Vol 41, p 375 (1969).CrossRefGoogle Scholar
  58. 58.
    B N Taylor, W H Parker, D N Langenberg, and A Denenstein, Metrologia, Vol 3, p 89 (1967)CrossRefGoogle Scholar
  59. 59.
    D G McDonald, V E Kose, K M Evenson, J S Wells, and J D Cupp, Applied Physics Letters, Vol 15, p 121 (1969).CrossRefGoogle Scholar

Copyright information

© Palgrave Macmillan, a division of Macmillan Publishers Limited 1971

Authors and Affiliations

  • R. A. Kamper
    • 1
  1. 1.National Bureau of Standards ColoradoUSA

Personalised recommendations