Advertisement

Solutions of Gases in Metals

  • J. D. Fast
Chapter
Part of the Philips Technical Library book series (PTL)

Abstract

The noble gases are for practical purposes insoluble in metals(1). On the other hand, hydrogen, nitrogen and oxygen are soluble in many metals. As long as the concentration of the dissolved gas is low, the solubility at constant temperature is proportional to the square root of the gas pressure. From this it follows that the gas is present in the metal, not in the form of molecules but as atoms(2).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. 1.
    A. van Wberingen and N. Warmoltz, Physical Grav. 22, 849 (1956), proved that at high temperature helium diffuses through single-crystal walls of the non-metals germanium and silicon. Their experiments show that helium has a noticeable solubility in these elements which crystallize with the loosely-packed diamond structure.Google Scholar
  2. 2.
    See J. D. Fast, Interaction of Metals and Gases, Vol. 1, Thermodynamics and Phase Relations, Philips Technical Library, Eindhoven (1965), Chapter 7.Google Scholar
  3. 1.
    A. Coehn et al, Z. Phys. 83, 291 (1933).Google Scholar
  4. 2.
    J. Knaak and W. Eichenauer, Z. Naturf 23A, 1783 (1968).Google Scholar
  5. 3.
    J. Wesolowski, J. Jarmula and B. Rozenfeld, Bull Acad. Poi. Sci. Sér. Sci. chim. 9, 651 (1961).Google Scholar
  6. 4.
    R. A. Oriani and O. D. Gonzalez, 7. AIME 239, 1041 (1967).Google Scholar
  7. 5.
    W. Seith and O. Kubaschewski, Z. Elektrochem. 41, 551 (1935).Google Scholar
  8. 6.
    P, Dayal and L. S. Darken, Trans. AIME 188, 1156 (1950).Google Scholar
  9. 7.
    J. H. de Boer and J. D. Fast, Reel Trav. chim. Pays-Bas Belg. 59, 161 (1940).Google Scholar
  10. 1.
    F. Laves, Trans. Am. Soc. Metals 48A, 124 (1956).Google Scholar
  11. 1.
    L. J. Dijkstra, Philips Res. Rep. 2, 357 (1947).Google Scholar
  12. 2.
    G. K. Williamson and R. E. Smallman, Acta crystallogr. 6, 361 (1953).Google Scholar
  13. 3.
    Calculations based on the continuum theory of elasticity lead D. N. Beshers, J. Appl. Phys. 36, 290 (1965) to the conclusion that although this is so for nitrogen and carbon in iron, it does not apply to vanadium where these elements would occupy tetrahedral interstices which, according to Table 1, are larger than those in iron. According to his calculations oxygen and nitrogen in niobium and tantalum would also prefer tetrahedral sites to octahedral sites. It is doubtful whether these conclusions are justified (see Sections 1.5 and 1.6).Google Scholar
  14. 1.
    K. H. Jack, Proc. R. Soc. A208, 200 (1951).Google Scholar
  15. 2.
    See also: M. Cohen, Trans. AIME 224, 638 (1962).Google Scholar
  16. 1.
    C. Zener, Trans. AIME 167, 550 (1946).Google Scholar
  17. 2.
    J. L. Meijering, Phase Stability in Metals and Alloys (editored by P. S. Rudman, J. Stringer and R. I. Jaffee), McGraw-Hill, New York (1967), p. 359.Google Scholar
  18. 1.
    P. E. Busby, M. E. Warga and C. Wells, Trans. AIME 197, 1463 (1953).Google Scholar
  19. 2.
    M. E. Nicholson, Trans. AIME 200, 185 (1954).Google Scholar
  20. 3.
    C. C. Mcbride, J. W. Spretnak and R. Speiser, Trans. Am. Soc. Metals 46, 499 (1954).Google Scholar
  21. 1.
    J. L. Snoek, Physica,’s Grav. 9, 862 (1942).Google Scholar
  22. 1.
    A. H. Cottrell, Prog. Metal Phys. 1, 77 (1949).Google Scholar
  23. 2.
    J. D. Fast, Revue MetalL Paris 47, 779 (1950).Google Scholar
  24. 4.
    W. Shockley, J. Appl Phys. 10, 543 (1939).Google Scholar
  25. 1.
    W. Eichenauer, W. Loser and H. Witte, Z. Metallk. 56, 287 (1965).Google Scholar
  26. 2.
    W. J. Thomasch, Phys. Rev. 123, 510 (1961).Google Scholar
  27. 3.
    J. Bergsma and J. A. Goedkoop, Physicals Grav. 26, 744 (1960).Google Scholar
  28. 4.
    In some liquid metals the solubility of chlorine is very great. As an extreme example it can be mentioned that Cs and CsCl form an uninterrupted series of liquid solutions. See: M. A. Bredig, H. R. Bronstein and W. T. Smith, J. Am. Chem. Soc. 77, 1454 (1955).Google Scholar
  29. 1.
    J. D. Fast, Interaction of Metals and Gases, Vol. I. Thermodynamics and Phase Relations, Philips Technical Library, Eindhoven (1965) (Table 13, p. 161).Google Scholar
  30. 2.
    J. L. Meijering, Acta Metall 3, 157 (1955).Google Scholar
  31. 1.
    W. Eichenauer and G. Müller, Z. Metallk. 53, 321 (1962).Google Scholar
  32. 2.
    F. Bouillon et al., Acta Metall. 10, 647 (1962).Google Scholar
  33. 2.
    J. J. Vuillemin, Phys. Rev. 144, 396 (1966).Google Scholar
  34. 1.
    J. M. Ziman, Electrons in Metals (a short guide to the Fermi surface), Taylor & Francis, London (1964).zbMATHGoogle Scholar
  35. 2.
    W. A. Harrison and M. B. Webb (editors), The Fermi Surface, Wiley, New York (1960).Google Scholar
  36. 1.
    J. A. Rayne, Aust. J. Phys. 9, 189 (1956).Google Scholar
  37. 2.
    K. G. Ramanathan and T. M. Srinivasan, J. Scient. Ind. Res. 16B, 277 (1957).Google Scholar
  38. 1.
    L. Troost and P. Hautefeuille, Annls. Chim. phys. 2, 279 (1874).Google Scholar
  39. 2.
    C. Hoitsema, Z. phys. Chem. 17, 1 (1895).Google Scholar
  40. 3.
    L. W. Mckeehan, Phys. Rev. 21, 334 (1923).Google Scholar
  41. 4.
    J. O. Linde and G. Borelius, Annln Phys. 84, 747 (1927).Google Scholar
  42. 5.
    F. Krüger and G. Gehm, Annln Phys. 16, 174 (1933).Google Scholar
  43. 6.
    E. A. Owen and E. St J. Williams, Proc. phys. Soc. 56, 52 (1944).Google Scholar
  44. 7.
    A. J. Maeland and T. R. P. Gibb, J. phys. Chem., Ithaca 65, 1270 (1961).Google Scholar
  45. 1.
    H. Brüning and A. Sieverts, Z. phys. Chem. A163, 409 (1932).Google Scholar
  46. 2.
    L. J. Gillespie and L. S. Galstaun, J. Am. chem. Soc. 58, 2565 (1936).Google Scholar
  47. 3.
    P. L. Levine and K. E. Weale, Trans. Faraday Soc. 56, 357 (1960).Google Scholar
  48. 4.
    E. Wicke and G. H. Nernst, Ber. Bunsenges. 68, 224 (1964).Google Scholar
  49. 5.
    An extensive survey of the older literature on the Pd-H system can be found in D. P. Smith’s book: Hydrogen in Metals, University Press, Chicago (1948).Google Scholar
  50. 6.
    An accurate summary of the present state of knowledge on the Pd-H system is provided by F. A. Lewis, The Palladium-Hydrogen System, Academic Press, New York (1967).Google Scholar
  51. 7.
    P. C. Aben and W. G. Burgers, Trans. Faraday Soc. 58, 1989 (1962).Google Scholar
  52. 1.
    W. Krause and L. Kahlenberg, Trans, electrochem. Soc. 68, 449 (1935).Google Scholar
  53. 2.
    D. P. Smith and G. J. Derge, Trans, electrochem. Soc. 66, 253 (1934).Google Scholar
  54. 3.
    T. J. Tiedema, B. C. de Jong and W. G. Burgers, Proc. K. ned. Akad. Wet. B63, 422 (1960).Google Scholar
  55. 4.
    A. Küssner and E. Wicke, Z. phys. Chem. 24, 152 (1960).Google Scholar
  56. 5.
    A. Küssner, Z. Elektrochem. 66, 675 (1962).Google Scholar
  57. 1.
    J. P. Hoare and S. Schuldiner, J. phys. Chem., Ithaca 61, 399 (1957).Google Scholar
  58. 2.
    S. Schuldiner, G. W. Castellan and J. P. Hoare, J. chem. Phys. 28, 16, 20 and 22 (1958).Google Scholar
  59. 3.
    T. B. Flanagan and F. A. Lewis, Trans. Faraday Soc. 55, 1400 and 1409 (1959).Google Scholar
  60. 4.
    R. J. Fallon and G. W. Castellan, J. phys. Chem., Ithaca 64, 4 (1960).Google Scholar
  61. 5.
    A. W. Carson, T. B. Flanagan and F. A. Lewis, Trans. Faraday Soc. 56, 363, 371 and 1332 (1960).Google Scholar
  62. 6.
    T. B. Flanagan, J. phys. Chem., Ithaca 65, 280 (1961).Google Scholar
  63. 7.
    J. R. Lacher, Proc. R. Soc. A161, 525 (1937).Google Scholar
  64. 8.
    G. G. Libowitz, J. Appl. Phys. 33, 399 (1962).Google Scholar
  65. 1.
    H. Brodowsky, Z. phys. Chem. 44, 129 (1965).Google Scholar
  66. 2.
    J. W. Simons and T. B. Flanagan, Can. J. Chem. 43, 1665 (1965).Google Scholar
  67. 3.
    S. D. Axelrod and A. C. Makrides, J. phys. Chem., Ithaca 68, 2154 (1964).Google Scholar
  68. 4.
    A. C. Makrides, J. phyti Chem., Ithaca 68, 2160 (1964).Google Scholar
  69. 1.
    E. Wigner and H. B. Huntington, J. chem. Phys. 3, 764 (1935).Google Scholar
  70. 2.
    A. R. Ubbelohde, Proc. R. Soc. A159, 295 and 306 (1937).Google Scholar
  71. 3.
    J. Friedel, Adv. Phys. 3, 446 (1954).Google Scholar
  72. 4.
    Y. Ebisuzaki and M. O’keeffe, J. phys. Chem., Ithaca 72, 4695 (1968).Google Scholar
  73. 5.
    D. M. Nace and J. G. Aston, J. Am. Chem. Soc. 79, 3623 (1957).Google Scholar
  74. 6.
    J. E. Worsham, M. K. Wilkinson and C. G. Shull, Physics Chem. Solids 3, 303 (1957).Google Scholar
  75. 7.
    P. S. Perminov, A. A. Orlov and A. N. Frumkin, Dokl. Akad. Nauk S.S.S.R. 84, 749 (1952).Google Scholar
  76. 1.
    K. Skold and G. Nelin, Physics Chem. Solids 28, 2369 (1967).Google Scholar
  77. 2.
    A. J. Maeland, Can. J. Phys. 46, 121 (1968).Google Scholar
  78. 1.
    B. Svensson, Annln Phys. 18, 299 (1933).Google Scholar
  79. 2.
    A. Sieverts and W. Danz, Z. phys. Chem. B38, 61 (1937).Google Scholar
  80. 3.
    N. F. Mott and H. Jones, Theory of the Properties of Metals and Alloys, Oxford University Press (1936), Chapter 6.Google Scholar
  81. 4.
    P. Brill and J. Voitländer, Z. Naturf. 24A, 1 (1969).Google Scholar
  82. 1.
    F. E. Hoare, J. C. Matthews and J. C. Walling, Proc. R. Soc. A216, 502 (1953).Google Scholar
  83. 2.
    B. Svensson, Annln Phys. 14, 699 (1932).Google Scholar
  84. 3.
    J. Wucher, Annls Phys. 7, 317 (1952).Google Scholar
  85. 4.
    E. Vogt, Annln Phys. 14, 1 (1932).Google Scholar
  86. 5.
    B. R. Coles, J. Inst. Metals 84, 346 (1956).Google Scholar
  87. 6.
    J. S. Dugdale and A. M. Gulnault, Phil. Mag. 13, 503 (1966).Google Scholar
  88. 1.
    G. Rosenhall, Annln Phys. 24, 297 (1935).Google Scholar
  89. 2.
    S. D. Axelrod and A. C. Makrides, J. phys. Chem., Ithaca 68, 2154 (1964).Google Scholar
  90. 3.
    A. C. Makrides, J. phys. Chem., Ithaca 68, 2160 (1964).Google Scholar
  91. 4.
    H. Brodowsky and E. Poeschel, Z. phys. Chem. 44, 143 (1965).Google Scholar
  92. 1.
    Analogous results have been obtained by Allard et al. in determinations of the heats of absorption of hydrogen in a series of palladium-gold alloys. Over the investigated region of gold concentrations (5•7 to 44•7 atom per cent Au) the enthalpy of solution for hydrogen at infinite dilution varies from −25 kJ mole−1 (−6•0 kcal/mole) for 5•7% Au to −39 kJ mole−1 (−9•3 kcal/mole) for 44•7% Au; K. Allard, A. Maeland, J. W. Simons and T. B. Flanagan, J. phys. Chem., Ithaca 72, 136 (1968).Google Scholar
  93. 1.
    K. M. Myles, Acta Metall. 13, 109 (1965).Google Scholar
  94. 2.
    K. H. Lieser and H. Witte, Z. Elektrochem. 61, 367 (1957).Google Scholar
  95. 3.
    G. Rosenhall, Annln Phys. 24, 297 (1935).Google Scholar
  96. 1.
    A. Sieverts, E. Jurisch and A. Metz, Z. anorg. allg. Chem. 92, 329 (1915).Google Scholar
  97. 2.
    A. Sieverts and H. Hagen, Z. phys. Chem. A174, 247 (1935).Google Scholar
  98. 1.
    J. B. Hunter, Platin. Metals Rev. 4, 130 (1960).Google Scholar
  99. 2.
    A. A. Rodina, M. A. Gurevich and N. I. Doronicheva, Russ. J. Phys. Chem. 41, 1286 (1967).Google Scholar
  100. 3.
    E. M. Wise, Palladium, Academic Press, New York (1968), Chapter 12.Google Scholar
  101. 4.
    M. Hansen and K. Anderko, Constitution of Binary Alloys, McGraw-Hill, New York (1958).Google Scholar
  102. 5.
    E. Raab, J. less-common Metals 1, 3 (1959).Google Scholar
  103. 6.
    A. Maeland and T. B. Flanagan, J. phys. Chem., Ithaca 69, 3575 (1965).Google Scholar
  104. 7.
    A. Maeland and T. B. Flanagan, J. phys. Chem., Ithaca 68, 1419 (1964).Google Scholar
  105. 8.
    N. F. Mott and H. Jones, Theory of the Properties of Metals and Alloys, Oxford University Press (1936).Google Scholar
  106. 1.
    A. Sieverts, E. Jurisch and A. Metz, Z. anorg. allg. Chem. 92, 329 (1915).Google Scholar
  107. 1.
    A. Maeland and T. B. Flanagan, J. phys. Chem., Ithaca 69, 3575 (1965).Google Scholar
  108. 2.
    A. W. Carson, T. B. Flanagan and F. A. Lewis, Trans. Faraday Soc. 56, 1332 (1960).Google Scholar
  109. 3.
    A. Maeland and T. B. Flanagan, J. phys. Chem., Ithaca 68, 1419 (1964).Google Scholar
  110. 1.
    T. B. Flanagan, J. phys. Chem., Ithaca 67, 203 (1963).Google Scholar
  111. 2.
    A. Maeland and T. B. Flanagan, J. Phys. Chem., Ithaca 68, 1419 (1964).Google Scholar
  112. 1.
    I. P. Tverdovskii and A. I. Stetsenko, Dokl. Akad. Nauk SSSR 84, 997 (1952).Google Scholar
  113. 2.
    I. P. Tverdovskii and Z.H.L. Vert, Dokl. Akad. Nauk SSSR 88, 305 (1953).Google Scholar
  114. 3.
    R. Burch and F. A. Lewis, Trans. Faraday Soc. 66, 727 (1970).Google Scholar
  115. 4.
    J. R. Lacher, Proc. R. Soc. A161, 525 (1937).Google Scholar
  116. 5.
    J. S. Anderson, Proc. R. Soc. A185, 69 (1946).Google Scholar
  117. 6.
    A. Harasima, T. Tanaka and K. Sakaoku, J. phys. Soc. Japan 3, 208 and 213 (1948).Google Scholar
  118. 7.
    A. L. G. Rees, Trans. Faraday Soc. 50, 335 (1954).Google Scholar
  119. 8.
    G. G. Libowitz, J. Appl. Phys. 33, 399 (1962).Google Scholar
  120. 9.
    A. C. Makrides, J. phys. Chem., Ithaca 68, 2160 (1964).Google Scholar
  121. 10.
    H. Brodowsky, Z. phys. Chem. 44, 129 (1965).Google Scholar
  122. 11.
    H. Brodowsky and E. Poeschel, Z. phys. Chem. 44, 143 (1965).Google Scholar
  123. 12.
    J. W. Simons and T. B. Flanagan, Can. J. Chem. 43, 1665 (1965).Google Scholar
  124. 13.
    K. Allard, A. Maeland, J. W. Simons and T. B. Flanagan, J. phys. Chem., Ithaca 72, 136 (1968).Google Scholar
  125. 14.
    Y. Ebisuzaki and M. O’keeffe, J. phys. Chem., Ithaca 72, 4695 (1968).Google Scholar
  126. 15.
    R. Burch, Trans. Faraday Soc. 66, 736 and 749 (1970).Google Scholar
  127. 1.
    See, for example, S. A. Ahern, M. J. C. Martin and W. Sucksmith, Proc. R. Soc. A248, 145 (1958).Google Scholar
  128. 2.
    See, for example, E. W. Pugh and F. M. Ryan, Phys. Rev. 111, 1038 (1958).Google Scholar
  129. 1.
    P. A. Beck (ed.), Electronic Structure and Alloy Chemistry of the Transition Elements, Interscience, New York (1962).Google Scholar
  130. 2.
    R. A. Rapp and F. Maak, Acta Metall 10, 63 (1962).Google Scholar
  131. 3.
    A. Kidron, Phys. Lett. 26A, 593 (1968) and Phys. Rev. Lett. 22, 774 (1969).Google Scholar
  132. 1.
    B. Baranowski and M. Smialowski, Physics Chem. Solids 12, 206 (1959).Google Scholar
  133. 2.
    A. Janko, Bull. Acad. Pol. Sci. Ser. Sci. chim. 8, 131 (1960).Google Scholar
  134. 1.
    T. Boniszewski and G. C. Smith, Physics Chem. Solids 21, 115 (1961).Google Scholar
  135. 2.
    A. Stroka and B. Baranowski, Bull. Acad. Pol. Sci. Ser. Sci. chim. 10, 147 (1962) and 14, 419 (1966).Google Scholar
  136. 3.
    E. O. Wollan, J. W. Cable and W. C. Koehler, Physics Chem. Solids 24, 1141 (1963).Google Scholar
  137. 1.
    B. Baranowski, Bull Acad. Pol Sci. Sér. Sci. chim. 10, 451 (1962).Google Scholar
  138. 2.
    A. Sieverts, Z. Metallk. 21, 37 (1929).Google Scholar
  139. 3.
    J. Smittenberg, Recl. Trav. chim. Pays-Bas Belg. 53, 1065 (1934).Google Scholar
  140. 4.
    M. H. Armbruster, J. Am. chem. Soc. 65, 1043 (1943).Google Scholar
  141. 5.
    B. Baranowski and Z. Szklarska-Smialowska, Electrochim. Acta 9, 1497 (1964).Google Scholar
  142. 2.
    B. Baranowski and K. Bochenska, Z. phys. Chem. 45, 140 (1965).Google Scholar
  143. 3.
    B. Baranowski and R. Wisniewski, Bull Acad. Pol. Sci. Sér. Sci. chim. 14, 273 (1966).Google Scholar
  144. 4.
    C. Wagner, Z. phys. Chem. 193, 386 (1944).Google Scholar
  145. 5.
    A. R. Ubbelohde, Proc. R. Soc. A159, 295 (1937).Google Scholar
  146. 6.
    N. A. Scholtus and W. K. Hall, J. chem. Phys. 39, 868 (1963).Google Scholar
  147. 1.
    D. H. Everett and P. Nordon, Proc. R. Soc. A259, 341 (1960).Google Scholar
  148. 2.
    J. R. Lacher, Proc. R. Soc. A161, 525 (1937).Google Scholar
  149. 3.
    H. J. Bauer and E. Schmidbauer, Z. Phys. 164, 367 (1961).Google Scholar
  150. W. Andrä, Phys. stat. sol. 1, K135 (1961).Google Scholar
  151. 1.
    D. J. van Ooyen, Physics Chem. Solids 23, 1173 (1962).Google Scholar
  152. 2.
    B. A. Wilcox and G. C. Smith, Acta Metall. 13, 331 (1965).Google Scholar
  153. 3.
    J. D. Fast, Interaction of Metals and Gases, Vol. I. Thermodynamics and Phase Relations, Philips Technical Library, Eindhoven (1965), Section 7.6.Google Scholar
  154. 4.
    M. Smialowski, Hydrogen in Steel, Pergamon Press, London (1962), p. 57.Google Scholar
  155. 5.
    A. Faessler and R. Schmid, Z. Phys. 190, 10 (1966).Google Scholar
  156. 6.
    G. K. Wertheim and D. N. E. Buchanan, Physics Chem. Solids 28, 225 (1967).Google Scholar
  157. 1.
    G. Hägg, Z. phys. Chem. B12, 33 (1931).Google Scholar
  158. 2.
    R. C. Evans, An Introduction to Crystal Chemistry, Cambridge University Press (1939).Google Scholar
  159. 1.
    T. R. P. Gibb, Prog, inorg. Chem. 3, 315 (1962).Google Scholar
  160. 2.
    G. G. Libowitz, The Solid-State Chemistry of Binary Metal Hydrides, Benjamin, New York (1965).Google Scholar
  161. 1.
    The existence range of cubic titanium hydride extends from TiH to TiH2 (idealized formulae). The figures in Table 3 are taken from the book by W. B. Pearson, Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, London (1958).Google Scholar
  162. 2.
    A. R. Ubbelohde, Proc. R. Soc. A159, 295 (1937).Google Scholar
  163. 3.
    I. Isenberg, Phys. Rev. 79, 736 (1950).Google Scholar
  164. 2.
    T. R. P. Gibb, J. Macmillan and R. J. Roy, J. phys. Chem., Ithaca 70, 3024 (1966).Google Scholar
  165. 1.
    R. J. Smith, A. I. Schindler and E. W. Kammer, Phys. Rev. 127, 179 (1962).Google Scholar
  166. 2.
    C. A. Mackliet and A. I. Schindler, Phys. Rev. 146, 463 (1966).Google Scholar
  167. 1.
    W. C. Phillips and C. W. Kimball, Phys. Reu. 165, 401 (1968).Google Scholar
  168. 2.
    D. Zamir, Phys. Rev. 140, A271 (1965).Google Scholar
  169. 3.
    Y. Ebisuzaki and M. O’keeffe, Prog. Sol. State Chem. 4, 187 (1967).Google Scholar
  170. 4.
    K. M. Mackay, Hydrogen Compounds of the Metallic Elements, E. & F. N. Spon, London (1966).Google Scholar
  171. 1.
    M. N. A. Hall, S. L. H. Martin and A. L. G. Rees, Trans. Faraday Soc. 41, 306 (1945) and 50, 343 (1954).Google Scholar
  172. 2.
    K. P. Singh and J. Gordon Parr, Trans. Faraday Soc. 59, 2248 (1963).Google Scholar
  173. 3.
    M. T. Hepwörth and R. Schuhmann, Trans. AIME 224, 928 (1962).Google Scholar
  174. 4.
    R. K. Edwards and P. Levesque, J. Am. Chem. Soc. 77, 1312 (1955).Google Scholar
  175. 5.
    H. O. Pritchard and H. A. Skinner, Chem. Rev. 55, 745 (1955).Google Scholar
  176. 1.
    A. L. Allred and E. G. Rochow, J. inorg. nucl. Chem. 5, 264 (1958).Google Scholar
  177. 2.
    E. J. Little and M. M. Jones, J. chem. Educ. 37, 231 (1960).Google Scholar
  178. 3.
    L. Pauling, The Nature of the Chemical Bond, Cornell University Press, New York (1945).zbMATHGoogle Scholar
  179. 4.
    R. T. Bryant, J. less-common Metals 4, 62 (1962).Google Scholar
  180. 5.
    W. E. Few and G. K. Manning, Trans. AIME 194, 271 (1952).Google Scholar
  181. 6.
    D. W. Jones, N. Pessall and A. D. Mcquillan, Phil. Mag. 6, 455 (1961).Google Scholar
  182. 7.
    D. W. Jones and A. D. Mcquillan, Physics Chem. Solids 23, 1441 (1962).Google Scholar
  183. 8.
    D. W. Jones, Phil. Mag. 9, 709 (1964).Google Scholar
  184. 1.
    N. V. Grum-Grzhimailo and V. G. Gromova, Zh. neorg. Khim. 2, 2426 (1957).Google Scholar
  185. 2.
    J. Bardeen, L. N. Cooper and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).Google Scholar
  186. 3.
    T. H. Geballe, Rev. Mod. Phys. 36, 134 (1964).Google Scholar
  187. 4.
    R. A. Hein, J. W. Gibson and R. D. Blaugher, Rev. Mod. Phys. 36, 149 (1964).Google Scholar
  188. 5.
    W. Desorbo, Phys. Rev. 130, 2177 (1963) and 140, A914 (1965).Google Scholar
  189. 6.
    R. O. Davies (ed.), Proc. 8th Intern. Conf. Low Temp. Phys., Butterworths, London (1963).Google Scholar
  190. 7.
    K. M. Ralls and J. Wulff, J. less-common Metals 11, 127 (1966).Google Scholar
  191. 1.
    C. D. Wiseman, J. appl Phys. 37, 3599 (1966).Google Scholar
  192. 2.
    D. P. Seraphim, D. T. Novick and J. I. Budnick, Acta Metall. 9, 446 (1961).Google Scholar
  193. 3.
    J. H. de Boer and J. D. Fast, Reel Trav. chim. Pays-Bas Belg. 59, 161 (1940).Google Scholar
  194. 4.
    F. Claisse and H. P. Koenig, Acta Metall. 4, 650 (1956).Google Scholar
  195. 5.
    P. S. Rudman, Electrotransport Seminar, 94th Annual AIME Meeting, Chicago, 1965.Google Scholar
  196. 1.
    T.H. Heumann, The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, Vol. 1, Paper 2C, Her Majesty’s Stationery Office, London (1959).Google Scholar
  197. 2.
    J. D. Verhoeven, Metall. Rev. 8, 311 (1963).Google Scholar
  198. 3.
    R. A. Oriani and O. D. Gonzalez, Trans. AIME 239, 1041 (1961).Google Scholar
  199. 4.
    Yu. G. Miller, Soviet Phys. Solid St. 3, 1728 (1962).Google Scholar
  200. 5.
    Yu. G. Miller and K. P. Gurov, Soviet Phys. Solid St. 3, 2096 (1962).Google Scholar
  201. 6.
    M. J. Bibby and W. V. Youdelis, Can. J. Phys. 44, 2363 (1966).Google Scholar
  202. 7.
    M. J. Bibby, L. C. Hutchinson and W. V. Youdelis, Can. J. Phys. 44, 2375 (1966).Google Scholar

Copyright information

© N. V. Philips’ Gloeilampenfabrieken, Eindhoven 1971

Authors and Affiliations

  • J. D. Fast
    • 1
  1. 1.The Technical University of EindhovenCanada

Personalised recommendations