Skip to main content

Fatigue and Incremental Collapse

  • Chapter
Pressure Vessel Design and Analysis

Abstract

Cyclic fatigue is said to cause the failure of a structural member which breaks during a load cycle that it has previously withstood. This type of failure is perhaps the most common in machine elements subjected to cyclic stresses in the elastic range. In the pressure vessel industry, a similar type of elastic strain fatigue occurs when a component suffers rapid vibration, for instance in welded brackets supporting unbalanced rotating machinery, in pipes under pulsating flow, etc. The amplitude of the oscillations, compared to the steady value of the load, is usually small and fracture occurs after a large number of cycles, say 105–107 cycles. Design to prevent this type of fatigue failure follows generally accepted rules and will not be discussed here in detail, but the reader is referred to standard books on the subject (Refs. 1, 2, 3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Peterson R. E. Stress Concentration Design Factors (Wiley, 1953).

    Google Scholar 

  2. Heywood R. B. Designing by Photoelasticity (Chapman & Hall, 1952).

    Google Scholar 

  3. Forrest P. G. Fatigue of Metals (Pergamon, 1962).

    Google Scholar 

  4. Martin D. E. ‘An Energy Criterion for Low-Cycle Fatigue’, A.S.M.E. Paper No. 61-Met-4.

    Google Scholar 

  5. Miller D. R. J. Basic Eng. 81 (1959) 190.

    Google Scholar 

  6. Edmunds H. G. & Beer F. J. J. Mech. Eng. Sci. 3 (1961) 187.

    Article  Google Scholar 

  7. Tavernelli J. F. & Coffin L. F. ‘Experimental Support for Generalized Equation Predicting Low-Cycle Fatigue’, A.S.M.E. Paper No. 61-WA199.

    Google Scholar 

  8. Sessler J. G. & Weiss V. ‘Low-Cycle Fatigue Damage of Pressure Vessel Materials’, A.S.M.E. Paper No. 62-WA-233.

    Google Scholar 

  9. Sachs G., Gerberich, W. W., Weiss V. & Latorre J. V. Proc. A.S.T.M. 60 (1960) 512.

    Google Scholar 

  10. Miner M. A. Trans. A.S.M.E. 67 (1945) 159.

    Google Scholar 

  11. Langer B. F. Bettis Technical Review WAPD-BT-18, April 1960.

    Google Scholar 

  12. Yao J. T. P. & Munse W. H. Welding J. (Res. Supp.), 41 (1962) 182s.

    Google Scholar 

  13. Coffin L. F. Trans. A.S.M.E. 76 (1954) 931.

    Google Scholar 

  14. Coffin L. F. Paper in Symposium on Effect of Cyclic Heating and Stressing on Metals at Elevated Temperatures, A.S.T.M. Spec. Pub. No. 165 (1954).

    Google Scholar 

  15. Lane P. H. R., B.W.R.A. Rep. FE 16/41/56.

    Google Scholar 

  16. Lane P. H. R. & Rose R. T. Paper in Symposium on Pressure Vessel Research Towards Better Design (I. Mech. E., 1962).

    Google Scholar 

  17. ROSe R. T. loc. cit. Ref. 16.

    Google Scholar 

  18. Markl A. R. C. Paper in Pressure Vessel and Piping Design: Collected Papers (A.S.M.E., 1960).

    Google Scholar 

  19. Langer B. F. Welding J. (Res. Supp.) 37 (1959) 411s.

    Google Scholar 

  20. Langer B. F. J. Basic Eng. 84 (1962) 389.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Copyright information

© 1967 M. B. Bickell and C. Ruiz

About this chapter

Cite this chapter

Bickell, M.B., Ruiz, C. (1967). Fatigue and Incremental Collapse. In: Pressure Vessel Design and Analysis. Palgrave, London. https://doi.org/10.1007/978-1-349-00129-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-00129-3_12

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-00131-6

  • Online ISBN: 978-1-349-00129-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics