General Basic Standards

  • A. T. Hens
Part of the Philips Technical Library book series (PTL)


Technical development, scientific research and better communications have caused closed trading communities to be absorbed in the industrialized society. Here, diversity strikes a discordant note, and there is thus a general trend towards standardization, which can be defined as follows:

A branch of applied science and technology seeking a logical and economically sound solution to problems associated with the creation of order in specific spheres of human activity through mutual agreement, consultation, co-ordination, study and experience.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mémento de l’Ingenieur de Normalisation d’Enterprise, AFNOR (1958).Google Scholar
  2. 2.
    Birle, J., Conséquences économiques de la Normalisation, Conférence tenue au centre économique et social de perfectionnement des cadres, Paris (1954).Google Scholar
  3. 3.
    The operation of a Company Standard Department, BSI, London (1959).Google Scholar
  4. 4.
    Normungsarbeit in Betrieben, Normenheft 1, DNA (1947).Google Scholar
  5. 5.
    Moore, L. B., Industrial Standardization, section 9, Handbook of Industrial Management (1960).Google Scholar
  6. 1.
    Haeder, W., Die Krafteinheit “Newton” in Berechnungen der Technik, DIN-Mitteilungen, October 1962.Google Scholar
  7. 2.
    Pallez, A., La nouvelle réglementation des unités de mesure, Cour, de la Norm. No. 193 (1962).Google Scholar
  8. 3.
    Quantities and units of the SI, ISO Recommendation R31.Google Scholar
  9. 4.
    Sass, F., Sollen auch die Techniker zum MKSA-System übergehen?, Konstruktion 11, (May 5), 1959.Google Scholar
  10. 5.
    Hvistendahl, H. S., Engineering Units and Physical Quantities, Macmillan, London, 1964.Google Scholar
  11. 1.
    ISO Recommendation R3–1954, Preferred numbers, series of preferred numbers.Google Scholar
  12. 2.
    Blanchet, M., Nombres normaux comme base de la normalisation internationale, Courrier de la Normalisation, 3 (1934).Google Scholar
  13. 3.
    Berg, S., Angewandte Normzahlen, Beuth-Vertrieb GmbH (1949).Google Scholar
  14. 4.
    Kienzle, O., Normungszahlen, Springer Verlag (1950).Google Scholar
  15. 1.
    ISO Recommendation R128–1959, Engineering drawing, Principles of presentation.Google Scholar
  16. 2.
    ISO Recommendation Rl 29–1959, Engineering drawing, Dimensioning.Google Scholar
  17. 3.
    ISO Recommendation R406–1964, Inscription of linear and angular tolerances.Google Scholar
  18. 1.
    Conway, H. G., Engineering tolerances, Pitman & Sons Ltd., London (1962).Google Scholar
  19. 2.
    Brandenberger, H., Toleranzen, Passung und Konstruktion, Zürich (1956).Google Scholar
  20. 3.
    Leinweber, P., Toleranzen und Lehren, Springer, Berlin (1948).CrossRefGoogle Scholar
  21. 4.
    Bolz, R. W., Production Processes, their influence on design, Pentan Publishing Co. Cleveland (1951).Google Scholar
  22. 5.
    Buckingham, E., Dimensions and Tolerances for Mass Production, Industrial Press, New-York (1954).Google Scholar
  23. 6.
    Adams, G. G., Principles and practice governing interchangeability, Proc. Instn. Mech. Engrs. 167, p. 154 (1953).CrossRefGoogle Scholar
  24. 7.
    Tschochner, H., Toleranzen, Passungen, Grenzlehren, Wintersche Verlagshandlung (1951).Google Scholar
  25. 8.
    ISO Recommendation R286–1962, ISO system of limits and fits: Part 1-General, tolerances and deviations.Google Scholar
  26. 9.
    Jumentier, R., Tolérances et ajustements, notions essentielles sur les ajustements des pièces lisses cylindriques et à faces parallèles, Dunod Paris (1953).Google Scholar
  27. 1.
    Reason, R. E., Report on the measurement of surface finish by stylus methods, Taylor-Hobson Research Department, Leicester, England (1946).Google Scholar
  28. 2.
    BS 1134: 1961, Centre-line-average height method for the assessment of surface texture.Google Scholar
  29. 3.
    Bickel, E. and Freitag, E., Die Definition und der zahlmässige Ausdruck für die Rauhigkeit, Industrielle Organisation, I (1952).Google Scholar
  30. 4.
    Schmalz, Technische Oberflächenkunde, Berlin 1936.Google Scholar
  31. 5.
    Olson, K. V., On the standardization of surface roughness, Brüel & Kjaer Technical Review, No. 3, 1961.Google Scholar
  32. 6.
    Nicolau, P., Problem of defining micro-geometrical irregularities of mechanical parts, Microtechnic (1953).Google Scholar
  33. 7.
    Perthen, J., Prüfen und Messen der Oberflächengestalt, Hanser, München (1949).Google Scholar
  34. 8.
    Vries, W. M., DE, Ein universelles System zur Begriffs- und Wertbestimmung der Oberflächenrauheit, Fachberichte für Oberflächentechnik, 2 (1964), No. 2.Google Scholar
  35. 9.
    ISO Recomendation R468–1966, Surface roughness.Google Scholar
  36. 1.
    Parker, S., Drawings and Dimensions, Pitman & Sons, London (1955).Google Scholar
  37. 2.
    Jetmar, L., Über zulässige Form- und Lageabweichungen, Der Maschinenbau, 1963 (9).Google Scholar
  38. 3.
    Tolerances and Limits, American Machinist Reference book sheet (1957).Google Scholar
  39. 4.
    Yribarren, R., Les tolérances de forme, Mécanique, Octobre 1949.Google Scholar
  40. 5.
    DIN 7182, Toleranzen und Passungen, Begriffe für Form- und Lageabweichungen.Google Scholar
  41. 6.
    Frautisek Dub, Erreurs de forme et de position, Cour, de la Normalisation No. 170 (1963).Google Scholar
  42. 7.
    Blye, H., Geometric tolerances, Machine Design, September, 1955.Google Scholar
  43. 8.
    Noble, G., Form tolerances, Canadian Machinery and Manufacturing News, January, 1955.Google Scholar
  44. 9.
    ISO document, Indications on drawings of tolerances of form and of position.Google Scholar
  45. 1.
    ISO Recommendation R68–1958, ISO Basic profile for triangular screw thread. Basic sizes for screw thread in the major diameter range 0.25–5 mm.Google Scholar
  46. 2.
    ISO Recommendation R261–1962, ISO metric screw threads. General plan (diameter range 0.25–300 mm).Google Scholar
  47. 3.
    ISO Recommendation R263–1962, ISO inch screw threads. General plan and selection for screws, bolts and nuts (diameter range 0-06-6 in).Google Scholar
  48. 1.
    ISO Recommendation R53–1957, Basic rack of cylindrical gears for general engineering.Google Scholar
  49. 2.
    ISO Recommendation R54–1957, Modules and diametral pitches of cylindrical gears for general engineering.Google Scholar
  50. 3.
    ISO Recommendation R467–1966, Preferred modules and diametral pitches of cylindrical gears for general engineering.Google Scholar
  51. 4.
    DIN 58400–1964 (Draft), Bezugsprofile für Verzahnungen der Feinwerktechnik.Google Scholar
  52. 5.
    Chiranis, N. P., New AGMA classification system for gears, Product Engineering, July 10, 1961.Google Scholar
  53. 1.
    Draft ISO Recommendation No. 413, Rolling bearings, tolerances, definitions.Google Scholar
  54. 2.
    ISO Recommendation R492–1966, Rolling bearings, radial bearings; tolerances.Google Scholar
  55. 3.
    ISO Recommendation R200–1961, Rolling bearings, internal clearance in unloaded bearings: definitions.Google Scholar
  56. 4.
    ISO Recommendation R201–1961, Rolling bearings, radial internal clearance in unloaded radial groove type ball bearings with cylindrical bore; values.Google Scholar
  57. 5.
    Palmgren, A., Ball and Roller Bearing Engineering, SKF Industries.Google Scholar
  58. 6.
    Staines, H. N., An introduction to Ball and Roller Bearings, 1954–1955, Assoc. Eng. Shipbuilding Draughtsmen.Google Scholar
  59. 7.
    Eschmann, Hasbargen, Weigand, Die Wälzlagerpraxis, Verlag von R. Oldenburg, München.Google Scholar

Copyright information

© N. V. Philips’ Gloeilampenfabrieken, Eindhoven 1970

Authors and Affiliations

  • A. T. Hens

There are no affiliations available

Personalised recommendations